
The Neo4j Graph Algorithms User
Guide v3.4

Table of Contents
Introduction . Ê2

Algorithms . Ê2

Installation . Ê4

Usage. Ê5

Projected Graph Model . Ê6

Label and relationship-type projection . Ê7

Cypher projection . Ê8

Named graphs . Ê11

The Yelp example . Ê13

The Yelp Open Dataset . Ê13

Data . Ê13

Graph model . Ê14

Import . Ê14

Networks . Ê16

Procedures . Ê20

Centrality algorithms . Ê27

The PageRank algorithm . Ê27

The ArticleRank algorithm . Ê37

The Betweenness Centrality algorithm . Ê43

The Closeness Centrality algorithm . Ê52

The Harmonic Centrality algorithm . Ê57

The Eigenvector Centrality algorithm . Ê61

The Degree Centrality algorithm . Ê67

Community detection algorithms . Ê74

The Louvain algorithm . Ê74

The Label Propagation algorithm . Ê84

The Connected Components algorithm . Ê90

The Strongly Connected Components algorithm . Ê98

The Triangle Counting / Clustering Coefficient algorithm . Ê103

The Balanced Triads algorithm . Ê110

Path finding algorithms . Ê116

The Minimum Weight Spanning Tree algorithm . Ê116

The Shortest Path algorithm . Ê124

The Single Source Shortest Path algorithm . Ê129

The All Pairs Shortest Path algorithm . Ê135

The A* algorithm . Ê138

The YenÕs K-shortest paths algorithm . Ê142

The Random Walk algorithm . Ê147

Similarity algorithms . Ê153

The Jaccard Similarity algorithm . Ê153

The Cosine Similarity algorithm . Ê165

The Pearson Similarity algorithm . Ê176

The Euclidean Distance algorithm . Ê188

The Overlap Similarity algorithm . Ê199

Link Prediction algorithms . Ê207

The Adamic Adar algorithm . Ê207

The Common Neighbors algorithm . Ê209

The Preferential Attachment algorithm . Ê211

The Resource Allocation algorithm . Ê213

The Same Community algorithm . Ê215

The Total Neighbors algorithm . Ê217

Preprocessing functions and procedures . Ê220

One Hot Encoding . Ê220

© 2019 Neo4j, Inc.

License: Creative Commons 4.0

This is the user guide for Neo4j Graph Algorithms version 3.4, authored by

the Neo4j Team.

The guide covers the following areas:

¥ Introduction !Ñ!An introduction to Neo4j Graph Algorithms.

¥ Projected Graph Model !Ñ!A detailed guide to the projected graph model.

¥ The Yelp example !Ñ!An illustration of how to use graph algorithms on a social network of
friends.

¥ Procedures !Ñ!A list of Neo4j Graph Algorithm procedures.

¥ Centrality algorithms !Ñ!A detailed guide to each of the centrality algorithms, including use-
cases and examples.

¥ Community detection algorithms !Ñ!A detailed guide to each of the community detection
algorithms, including use-cases and examples.

¥ Path finding algorithms !Ñ!A detailed guide to each of the path finding algorithms, including use-
cases and examples.

¥ Similarity algorithms !Ñ!A detailed guide to each of the similarity algorithms, including use-
cases and examples.

¥ Link Prediction algorithms !Ñ!A detailed guide to each of the link prediction algorithms,
including use-cases and examples.

¥ Preprocessing functions and procedures !Ñ!A detailed guide to each of the preprocessing
functions and procedures.

1

Introduction
This chapter provides an introduction to the available graph algorithms,

and instructions for installation and use.

This library provides efficiently implemented, parallel versions of common graph algorithms for
Neo4j 3.x, exposed as Cypher procedures.

Algorithms
Graph algorithms are used to compute metrics for graphs, nodes, or relationships.

They can provide insights on relevant entities in the graph (centralities, ranking), or inherent
structures like communities (community-detection, graph-partitioning, clustering).

Many graph algorithms are iterative approaches that frequently traverse the graph for the
computation using random walks, breadth-first or depth-first searches, or pattern matching.

Due to the exponential growth of possible paths with increasing distance, many of the approaches
also have high algorithmic complexity.

Fortunately, optimized algorithms exist that utilize certain structures of the graph, memoize
already explored parts, and parallelize operations. Whenever possible, weÕve applied these
optimizations.

Centrality algorithms

The following centrality algorithms determine the importance of distinct nodes in a network:

¥ PageRank (algo.pageRank)

¥ ArticleRank (algo.articleRank)

¥ Betweenness Centrality (algo.betweenness)

¥ Closeness Centrality (algo.closeness)

¥ Harmonic Centrality (algo.closeness.harmonic)

¥ Eigenvector Centrality (algo.eigenvector)

¥ Degree Centrality (algo.degree)

Community detection algorithms

The following community detection algorithms evaluate how a group is clustered or partitioned, as
well as its tendency to strengthen or break apart:

¥ Louvain (algo.louvain)

¥ Label Propagation (algo.labelPropagation)

¥ Connected Components (algo.unionFind)

2

¥ Strongly Connected Components (algo.scc)

¥ Triangle Counting / Clustering Coefficient (algo.triangleCount)

¥ Balanced Triads (algo.balancedTriads)

Path finding algorithms

The following path finding algorithms help find the shortest path or evaluate the availability and
quality of routes:

¥ Minimum Weight Spanning Tree (algo.mst)

¥ Shortest Path (algo.shortestPath)

¥ Single Source Shortest Path (algo.shortestPath)

¥ All Pairs Shortest Path (algo.allShortestPaths)

¥ A* (algo.shortestPath.astar)

¥ YenÕs K-shortest paths (algo.kShortestPaths)

¥ Random Walk (algo.randomWalk)

Similarity algorithms

These algorithms help calculate the similarity of nodes:

¥ Jaccard Similarity (algo.similarity.jaccard)

¥ Cosine Similarity (algo.similarity.cosine)

¥ Pearson Similarity (algo.similarity.pearson)

¥ Euclidean Distance (algo.similarity.euclidean)

¥ Overlap Similarity (algo.similarity.overlap)

Link Prediction algorithms

These algorithms help determine the closeness of a pair of nodes. We would then use the computed
scores as part of a link prediction solution:

¥ Adamic Adar (algo.linkprediction.adamicAdar)

¥ Common Neighbors (algo.linkprediction.commonNeighbors)

¥ Preferential Attachment (algo.linkprediction.preferentialAttachment)

¥ Resource Allocation (algo.linkprediction.resourceAllocation)

¥ Same Community (algo.linkprediction.sameCommunity)

¥ Total Neighbors (algo.linkprediction.totalNeighbors)

Preprocessing functions and procedures

The following feature and procedure can be used as part of the data preparation process:

3

¥ One Hot Encoding (algo.ml.oneHotEncoding)

Installation

Neo4j Desktop

If we are using the Neo4j Desktop , the library can be installed from the 'Plugins' tab of a database.

The installer will download a copy of the graph algorithms library and place it in the 'plugins'
directory of the database. It will also add the following entry to the settings file:

dbms.security.procedures.unrestricted=algo.*

Neo4j Server

If we are using a standalone Neo4j Server, the library will need to be installed and configured
manually.

1. Download graph-algorithms-algo-[version].jar from the matching release and copy it into the
$NEO4J_HOME/plugins directory. We can work out which release to download by referring to the
versions file .

2. Add the following to your $NEO4J_HOME/conf/neo4j.conf file:

dbms.security.procedures.unrestricted=algo.*

We need to give the library unrestricted access because the algorithms use the lower level

4

https://neo4j.com/docs/operations-manual/current/installation/neo4j-desktop/index.html
https://github.com/neo4j-contrib/neo4j-graph-algorithms/releases
https://github.com/neo4j-contrib/neo4j-graph-algorithms/blob/master/versions.json

Kernel API to read from, and to write to Neo4j.

3. Restart Neo4j

Verifying installation

Once weÕve installed the library, to see a list of all the algorithms, run the following query:

CALL algo.list()

Usage
These algorithms are exposed as Neo4j procedures. They can be called directly from Cypher in your
Neo4j Browser, from cypher-shell, or from your client code.

For most algorithms there are two procedures:

¥ algo.<name> - this procedure writes results back to the graph as node-properties, and reports
statistics.

¥ algo.<name>.stream - this procedure returns a stream of data. For example, node-ids and
computed values.

For large graphs, the streaming procedure might return millions, or even billions of results. In
this case it may be more convenient to store the results of the algorithm, and then use them
with later queries.

5

Projected Graph Model
This section explains the projected graph model used by the Neo4j Graph

Algorithms library.

Graph algorithms run on an in-memory projected graph model. The projected graph model is
separate from Neo4jÕs stored graph model, to enable fast caching for the topology of the graph,
containing only relevant nodes, relationships and weights. The projected graph model does not
support multiple relationships between a single pair of nodes.

The library supports two approaches for loading projected graphs; either Label and relationship-
type projection , or Cypher projection .

During projection, only one relationship between a pair of nodes per direction (in, out) is allowed
in the directed case, but two relationships are allowed for BOTH the undirected cases.

As it can take some time to load large graphs into the algorithm data structures, you can pre-load
graphs and then later refer to them by name when calling graph algorithm procedures. Named
graphs can be loaded using either of the projected graph models. After usage, named graphs can be
removed from memory to free resources used.

For more information, see:

¥ Label and relationship-type projection

¥ Cypher projection

¥ Named graphs

6

Label and relationship-type projection

This chapter explains label and relationship-type projection in the Neo4j

Graph Algorithms library.

We can project the subgraph we want to run the algorithm on by using the label parameter to
describe nodes, and relationship-type to describe relationships.

The general call syntax is:

The following will run the algorithm for the label NodeLabel and relationship type RelationshipType

CALL algo.<name>('NodeLabel', "RelationshipType", {config})

For example, running the PageRank algorithm on DBpedia, which contains 11 million nodes and
116 million relationships:

The following will run the write version of the algorithm, storing results in the pagerank property:

CALL algo.pageRank('Page','Link',{iterations:5, dampingFactor:0.85, write: true,
writeProperty:'pagerank'});

The following will run the streaming version of the algorithm:

CALL algo.pageRank.stream('Page','Link',{iterations:5, dampingFactor:0.85})
YIELD nodeId, score
RETURN algo.getNodeById(nodeId).title, score
ORDER BY score DESC LIMIT 10;

If we want to project a subgraph that includes all nodes and relationships in the underlying Neo4j
graph, we can achieve this by passing null values for the label and relationship type:

The following will run the algorithm over all nodes and relationships:

CALL algo.<name>(null, null)

Huge graph projection

The default label and relationship-type projection has a limitation of 2 billion nodes and 2 billion
relationships, so if our project graph is bigger than this we need to use a huge graph projection.
This can be enabled by setting graph:'huge' in the config.

The general call syntax is:

CALL algo.<name>('NodeLabel', "RelationshipType", {graph: "huge"})

7

For example, running the PageRank algorithm on DBpedia:

The following will run the write version of the algorithm, storing results in the pagerank property:

CALL algo.pageRank('Page','Link',{iterations:5, dampingFactor:0.85,
writeProperty:'pagerank',graph:'huge'});

If we want to project a subgraph that includes all nodes and relationships in the underlying Neo4j
graph, we can achieve this by passing null values for the label and relationship type:

The following will run the algorithm over all nodes and relationships:

CALL algo.<name>(null, null, {graph: 'huge'})

Cypher projection

This chapter explains Cypher projection in the Neo4j Graph Algorithms

library.

If the label and relationship-type projection is not selective enough to describe our subgraph to run
the algorithm on, we can use Cypher statements to project subsets of our graph. Use a node-
statement instead of the label parameter and a relationship-statement instead of the relationship-
type, and use graph:'cypher' in the config.

Relationships described in the relationship-statement will only be projected if both source and
target nodes are described in the node-statement, otherwise they will be ignored.

Cypher projection enables us to be more expressive in describing our subgraph that we want to
analyse, but might take longer to project the graph with more complex cypher queries.

The general call syntax is:

CALL algo.<name>(
Ê 'MATCH (n) RETURN id(n) AS id',
Ê "MATCH (n)-->(m) RETURN id(n) AS source, id(m) AS target",
Ê {graph: "cypher"})

¥ The first query MATCH (n) RETURN id(n) AS id returns node ids. The Cypher loader expects the
query to return an id field.

¥ The second query MATCH (n)-! (m) RETURN id(n) AS source, id(m) AS target returns pairs of
node ids that have a relationship between them in our projected graph. The Cypher loader
expects the query to return source and target fields.

Note that in both queries we use the id function to return the node id.

8

Weights

We can also return a property value or weight (according to our config) in addition to the ids from
these statements. We do this by returning an optional weight field.

The following will run the algortihm over a graph based on Cypher projections for nodes and relationships,
using the score property of each relationship as weight:

CALL algo.<name>(
Ê 'MATCH (n) RETURN id(n) AS id',
Ê "MATCH (n)-[r]->(m) RETURN id(n) AS source, id(m) AS target, r.score AS weight",
Ê {graph: "cypher"})

Example Usage

We could use Cypher projections to run the PageRank algorithm on DBpedia , as shown in the
following examples.

The following will run the PageRank algorithm over a graph based on Cypher projections for nodes and
relationships:

CALL algo.pageRank(
Ê 'MATCH (p:Page) RETURN id(p) as id',
Ê 'MATCH (p1:Page)-[:Link]->(p2:Page) RETURN id(p1) as source, id(p2) as target',
Ê {graph:'cypher', iterations:5, write: true});

Cypher projection can also be used to project a virtual (non-stored) graph. Here is an example of
how to project an undirected graph of people who visited the same web page and run the Louvain
community detection algorithm on it, using the number of common visited web pages between
pairs of people as relationship weight:

The following will run the Louvain algortihm over a graph based on Cypher projections for nodes and
relationships:

CALL algo.louvain(
Ê 'MATCH (p:Person) RETURN id(p) as id',
Ê 'MATCH (p1:Person)-[:VISIT]->(:Page)<-[:VISIT]-(p2:Person)
Ê RETURN id(p1) as source, id(p2) as target, count(*) as weight',
Ê {graph:'cypher', iterations:5, write: true});

Relationship deduplication

By default, the Cypher projection loader assumes that the relationship projection only contains one
relationship between a pair of nodes. If we return more than one relationship we can pass the
duplicateRelationships key in the config to decide what should happen with duplicates.

duplicateRelationships supports the following options:

¥ null - assumes that relationships returned are unique. (Default)

9

¥ skip - keeps the first relationship (and associated weight) encountered.

¥ sum - sums the associated weights of relationships encountered.

¥ min - keeps the minimum weight of relationships encountered.

¥ max - keeps the maximum weight of relationships encountered.

If we know that there are no duplicates in our relationship query, we should leave this parameter
unset. The other options will slow down relationship loading as they need to check for the existence
of existing relationships.

The following runs shortest path over a graph based on Cypher projections, picking the ROAD relationship
with minimum cost:

MATCH (start:Loc{name:'A'}), (end:Loc{name:'F'})
CALL algo.shortestPath(start, end, 'cost', {
Ê nodeQuery:'MATCH(n:Loc) RETURN id(n) as id',
Ê relationshipQuery:'MATCH(n:Loc)-[r:ROAD]->(m:Loc) RETURN id(n) as source, id(m) as
target, r.cost as weight',
Ê {graph:'cypher', duplicateRelationships: 'min'})
YIELD writeMillis,loadMillis,nodeCount, totalCost
RETURN writeMillis,loadMillis,nodeCount,totalCost

The following runs shortest path over a graph based on Cypher projections, picking the ROAD relationship
with maximum cost:

MATCH (start:Loc{name:'A'}), (end:Loc{name:'F'})
CALL algo.shortestPath(start, end, 'cost', {
Ê nodeQuery:'MATCH(n:Loc) RETURN id(n) as id',
Ê relationshipQuery:'MATCH(n:Loc)-[r:ROAD]->(m:Loc) RETURN id(n) as source, id(m) as
target, r.cost as weight',
Ê {graph:'cypher', duplicateRelationships: 'max'})
YIELD writeMillis,loadMillis,nodeCount, totalCost
RETURN writeMillis,loadMillis,nodeCount,totalCost

The following runs shortest path over a graph based on Cypher projections, summing the weights of ROAD
relationships:

MATCH (start:Loc{name:'A'}), (end:Loc{name:'F'})
CALL algo.shortestPath(start, end, 'cost', {
Ê nodeQuery:'MATCH(n:Loc) RETURN id(n) as id',
Ê relationshipQuery:'MATCH(n:Loc)-[r:ROAD]->(m:Loc) RETURN id(n) as source, id(m) as
target, r.cost as weight',
Ê {graph:'cypher', duplicateRelationships: 'max'})
YIELD writeMillis,loadMillis,nodeCount, totalCost
RETURN writeMillis,loadMillis,nodeCount,totalCost

10

Parallel loading

By default, Cypher projection queries are run on a single thread.

We can parallelize loading by including SKIP clause and $skip parameter, as well as LIMIT clause
and $limit parameter in our projection queries. Parallelization of the queries is based on the
batchSize key in the config, which has a default value of 10,000.

! If the parameters are not named $skip and $limit , they will be ignored, and the
sequential loading approach will be used.

The following runs PageRank over a graph based on Cypher projections, with nodes loaded in parallel:

CALL algo.pageRank(
Ê 'MATCH (p:Page) WITH p SKIP $skip LIMIT $limit RETURN id(p) as id',
Ê 'MATCH (p1:Page)-[:Link]->(p2:Page) RETURN id(p1) as source, id(p2) as target',
Ê {graph:'cypher', iterations:5, write: true});

The following runs PageRank over a graph based on Cypher projections, with relationships loaded in
parallel:

CALL algo.pageRank(
Ê 'MATCH (p:Page) RETURN id(p) as id',
Ê 'MATCH (p1:Page)-[:Link]->(p2:Page) WITH * SKIP $skip LIMIT $limit RETURN id(p1) as
source, id(p2) as target',
Ê {graph:'cypher', iterations:5, write: true});

The following runs PageRank over a graph based on Cypher projections, with nodes and relationships
loaded in parallel:

CALL algo.pageRank(
Ê 'MATCH (p:Page) WITH p SKIP $skip LIMIT $limit RETURN id(p) as id',
Ê 'MATCH (p1:Page)-[:Link]->(p2:Page) WITH * SKIP $skip LIMIT $limit RETURN id(p1) as
source, id(p2) as target',
Ê {graph:'cypher', iterations:5, write: true});

Named graphs

This section describes named graphs, which are stored only in memory.

When Neo4j is restarted, named graphs are lost and will need to be reloaded.

As it can take some time to load large graphs into the algorithm data structures, you can pre-load
graphs and then later refer to them by name when calling graph algorithm procedures. After usage,
they can be removed from memory to free resources used.

11

Loading a named graph

We can load named graphs using any of the approaches described in the projected graph model
section .

The following will load a graph with the name my-graph, for node label Label and relationship type REL_TYPE

CALL algo.graph.load('my-graph','Label','REL_TYPE',{graph:'heavy',..other config...})
YIELD name, graph, direction, undirected, sorted, nodes, loadMillis, alreadyLoaded,
Ê nodeWeight, relationshipWeight, nodeProperty, loadNodes, loadRelationships;

If we want to load a graph based on a Cypher projection , we should specify graph:'cypher' in the
config.

The following will load a named graph using Cypher projections for nodes and relationships.

CALL algo.graph.load('my-graph',
Ê 'MATCH (n) RETURN id(n) AS id',
Ê 'MATCH (a)-->(b) RETURN id(a) AS source, id(b) AS target',
Ê {graph:'cypher',..other config...})
YIELD name, graph, direction, undirected, sorted, nodes, loadMillis, alreadyLoaded,
Ê nodeWeight, relationshipWeight, nodeProperty, loadNodes, loadRelationships;

Once weÕve loaded a named graph we can return details about it.

The following will return details about a named graph:

CALL algo.graph.info('my-graph')
YIELD name, type, exists, removed, nodes;

Using a named graph

We can use our named graph in queries by specifying its name in the graph key of config.

The following will run the PageRank algorithm on the my-graph named graph:

CALL algo.pageRank(null,null,{graph:'my-graph',...})

Remove named graph

Once weÕve finished using the named graph we can remove them to free up memory.

The following will remove the my-graph named graph:

CALL algo.graph.remove('my-graph')
YIELD name, type, exists, removed, nodes;

12

The Yelp example
This chapter introduces the Yelp Open Dataset that is used throughout to

exemplify how the Neo4j Graph Algorithms work.

The Yelp Open Dataset
Yelp.com has been running the Yelp Dataset challenge since 2013; a competition that encourages
people to explore and research YelpÕs open dataset. As of Round 10 of the challenge, the dataset
contained:

¥ almost 5 million reviews

¥ over 1.1 million users

¥ over 150,000 businesses

¥ 12 metropolitan areas

Since its launch, the dataset has become very popular, with hundreds of academic papers written
about it. It has well-structured, and highly relational data, and is therefore a realistic dataset with
which to showcase Neo4j and graph algorithms.

We will illustrate how to use graph algorithms on a social network of friends, and how to create
and analyse an inferred graph (for example, projecting a review co-occurence graph, or similarity
between users based on their reviews). For more information, it is also worth checking out past
winners, and their work .

Data
In Round 10 of the challenge, the dataset included:

¥ 156,639 businesses

¥ 1,005,693 tips from users about businesses

¥ 4,736,897 reviews of businesses by users

¥ 9,489,337 users total

¥ 35,444,850 friend relationships

You can download the dataset in JSON format by filling out a form on YelpÕs website. There are 6
JSON files available (detailed documentation). For the purposes of this example, we will ignore the
photos and checkins files as they are not relevant for our analysis.

We will create a knowledge graph from the rest of the files, and will use the APOC plugin to help us
with importing and batching data in Neo4j. Depending on your setup, import might take some time
(the user.json file contains data for about a 10 million-person social network of friends). While
review.json is even bigger in size, it is mostly made up of the text that represents the actual review,
so the import will be faster. We also do not need the actual text, but only the meta-data about them.

13

https://www.yelp.com/
https://www.yelp.com/dataset/challenge
https://scholar.google.com/scholar?q=citation%3A+Yelp+Dataset&btnG=&hl=en&as_sdt=0%2C5
https://www.yelp.com/dataset/challenge/winners
https://www.yelp.com/dataset/challenge/winners
https://www.yelp.com/dataset/download
https://www.yelp.com/dataset/documentation/json
https://github.com/neo4j-contrib/neo4j-apoc-procedures/releases

For example, meta-data on who wrote the review and how a certain business was rated is
imported, but the text itself will not be imported.

Graph model

Our graph contains User labelled nodes, that can have a FRIEND relationship with other users. Users
also write reviews and tips about businesses. All of the meta-data is stored as properties of nodes,
except for categories of the businesses, which are represented by separate nodes labeled Category.

Graph model always depends on the application we have in mind for it. Our application is to
analyse (inferred) networks with graph algorithms. If we were to use our graph as a
recommendation engine, we might construct a different graph model.

For further information on using Neo4j as a recommendation engine, check out this great guide or
this educational video .

Import
Define graph schema (constraint/index)

CALL apoc.schema.assert(
{Category:['name']},
{Business:['id'],User:['id'],Review:['id']});

14

http://guides.neo4j.com/sandbox/recommendations
https://www.youtube.com/watch?v=oMTmG4ClO5I

Load businesses

CALL apoc.periodic.iterate("
CALL apoc.load.json('file:///dataset/business.json') YIELD value RETURN value
","
MERGE (b:Business{id:value.business_id})
SET b += apoc.map.clean(value,
['attributes','hours','business_id','categories','address','postal_code'],[])
WITH b,value.categories as categories
UNWIND categories as category
MERGE (c:Category{id:category})
MERGE (b)-[:IN_CATEGORY]->(c)
",{batchSize: 10000, iterateList: true});

Load tips

CALL apoc.periodic.iterate("
CALL apoc.load.json('file:///dataset/tip.json') YIELD value RETURN value
","
MATCH (b:Business{id:value.business_id})
MERGE (u:User{id:value.user_id})
MERGE (u)-[:TIP{date:value.date,likes:value.likes}]->(b)
",{batchSize: 20000, iterateList: true});

Load reviews

CALL apoc.periodic.iterate("
CALL apoc.load.json('file:///dataset/review.json')
YIELD value RETURN value
","
MERGE (b:Business{id:value.business_id})
MERGE (u:User{id:value.user_id})
MERGE (r:Review{id:value.review_id})
MERGE (u)-[:WROTE]->(r)
MERGE (r)-[:REVIEWS]->(b)
SET r += apoc.map.clean(value, ['business_id','user_id','review_id','text'],[0])
",{batchSize: 10000, iterateList: true});

15

Load users

CALL apoc.periodic.iterate("
CALL apoc.load.json('file:///dataset/user.json')
YIELD value RETURN value
","
MERGE (u:User{id:value.user_id})
SET u += apoc.map.clean(value, ['friends','user_id'],[0])
WITH u,value.friends as friends
UNWIND friends as friend
MERGE (u1:User{id:friend})
MERGE (u)-[:FRIEND]-(u1)
",{batchSize: 100, iterateList: true});

Networks

Social network

A Social network is a theoretical construct, useful in the social sciences to study relationships
between individuals, groups, organizations, or even entire societies. An axiom of the social network
approach to understanding social interaction is that social phenomena should be primarily
conceived and investigated through the properties of relationships between and within nodes,
instead of the properties of these nodes themselves. Precisely because many different types of
relations, singular or in combination, form these network configurations, network analytics are
useful to a broad range of research enterprises.

Social network analysis is the process of investigating social structures through the use of networks
and graph theory. It characterizes networked structures in terms of nodes (individual actors,
people, or things within the network) and the ties, edges, or links (relationships or interactions) that
connect them. Examples of social structures commonly visualized through social network analysis
include social media networks, memes spread, friendship and acquaintance networks,
collaboration graphs, kinship, and disease transmission.

Social network analysis has emerged as a key technique in modern sociology. It has also gained a
significant following in anthropology, biology, demography, communication studies, economics,
geography, history, information science, organizational studies, political science, social psychology,
development studies, sociolinguistics, and computer science.

YelpÕs friendship network is an undirected graph with unweighted friend relationships between
users. While there are over 500,000 users with no friends, they will be ignored in this analysis.

Global graph statistics:

Nodes : 8981389

Relationships : 35444850

Weakly connected components : 18512

16

https://en.wikipedia.org/wiki/Social_network
https://en.wikipedia.org/wiki/Social_network_analysis

Nodes in largest WCC : 8938630

Edges in largest WCC : 35420520

Triangle count :

Average clustering coefficient :

Graph diameter (longest shortest path):

Local graph statistics:

Use apoc to calculate local statistics

MATCH (u:User)
RETURN avg(apoc.node.degree(u,'FRIEND')) as average_friends,
Ê stdev(apoc.node.degree(u,'FRIEND')) as stdev_friends,
Ê max(apoc.node.degree(u,'FRIEND')) as max_friends,
Ê min(apoc.node.degree(u,'FRIEND')) as min_friends

Average number of friends : 7.47

Standard deviation of friends : 46.96

Minimum count of friends : 1

Maximum count of friends : 14995

Prior work:

¥ http://snap.stanford.edu/class/cs224w-2015/projects_2015/
Predicting_Yelp_Ratings_From_Social_Network_Data.pdf

¥ https://arxiv.org/pdf/1512.06915.pdf

¥ http://trust.sce.ntu.edu.sg/wit-ec16/paper/davoust.pdf

Projecting a review co-occurence graph

We can try to find which businesses are often reviewed by the same users, by inferring a co-
occurence network between them.

!
Co-occurrence networks are the collective interconnection of nodes, based on their
paired presence within a specified domain. Our network is generated by
connecting pairs of businesses using a set of criteria defining co-occurrence.

The co-occurrence criteria for this network is that any pair of businesses must have at least 5
common reviewers. We save the count of common reviewers as a property of the relationship that
will be used as a weight in community detection analysis. Inferred graph is undirected , as changing
the direction of the relationships does not imply any semantic difference. We will limit our network
to those businesses, that have more than 10 reviews and project a co-occurrent relationship

17

http://snap.stanford.edu/class/cs224w-2015/projects_2015/Predicting_Yelp_Ratings_From_Social_Network_Data.pdf
http://snap.stanford.edu/class/cs224w-2015/projects_2015/Predicting_Yelp_Ratings_From_Social_Network_Data.pdf
https://arxiv.org/pdf/1512.06915.pdf
http://trust.sce.ntu.edu.sg/wit-ec16/paper/davoust.pdf
https://en.wikipedia.org/wiki/Co-occurrence_networks
https://en.wikipedia.org/wiki/Co-occurrence_networks

between businesses:

Project a review co-occurence between businesses

CALL apoc.periodic.iterate('
MATCH (b1:Business)
WHERE size((b1)<-[:REVIEWS]->()) > 10 AND b1.city="Las Vegas"
RETURN b1
','
MATCH (b1)<-[:REVIEWS]-(r1)
MATCH (r1)<-[:WROTE]-(u)
MATCH (u)-[:WROTE]->(r2)
MATCH (r2)-[:REVIEWS]->(b2)
WHERE id(b1) < id(b2) AND b2.city="Las Vegas"
WITH b1, b2, COUNT(*) AS weight where weight > 5
MERGE (b1)-[cr:CO_OCCURENT_REVIEWS]-(b2)
ON CREATE SET cr.weight = weight
',{batchSize: 1});

Projecting a review similarity graph

We can try to find similar groups of users by projecting a review similarity network between them.
The idea is to start with users that have more than 10 reviews, and find all pairs of users who have
reviewed more than 10 common businesses. We do this to filter out users with not enough data. We
could do something similar to filter out users who have reviewed every business (probably a bot, or
someone very bored!).

Once we find pairs of users, we calculate their similarity of reviews by using cosine similarity, and
by only creating a relationship if cosine similarity is greater than 0; which is sometimes also called
hard similarity. We do this so we do not end up with complete graph, where every pair of users is
connected. Most community detection algorithms perform poorly in a complete graph. Cosine
similarity between pairs of users is saved as a property of relationship and can be used as a weight
in graph algorithms. Projected graph is modeled undirected , as the direction of the relationships
have no semantic value.

Projecting a review similarity graph is often used in recommendations; similar users are calculated
based on review ratings, so we can recommend to a user what similar users liked.

18

Create a review similarity graph

CALL apoc.periodic.iterate(
"MATCH (p1:User) WHERE size((p1)-[:WROTE]->()) > 5 RETURN p1",
"
MATCH (p1)-[:WROTE]->(r1)-->()<--(r2)<-[:WROTE]-(p2)
WHERE id(p1) < id(p2) AND size((p2)-[:WROTE]->()) > 10
WITH p1,p2,count(*) as coop, collect(r1.stars) as s1, collect(r2.stars) as s2 where
coop > 10
WITH p1,p2, apoc.algo.cosineSimilarity(s1,s2) as cosineSimilarity WHERE
cosineSimilarity > 0
MERGE (p1)-[s:SIMILAR_REVIEWS]-(p2) SET s.weight = cosineSimilarity"
, {batchSize:100, parallel:false,iterateList:true});

Prior work:

¥ http://snap.stanford.edu/class/cs224w-2015/projects_2015/
Predicting_Yelp_Ratings_Using_User_Friendship_Network_Information.pdf

¥ http://snap.stanford.edu/class/cs224w-2013/projects2013/cs224w-038-final.pdf

19

http://snap.stanford.edu/class/cs224w-2015/projects_2015/Predicting_Yelp_Ratings_Using_User_Friendship_Network_Information.pdf
http://snap.stanford.edu/class/cs224w-2015/projects_2015/Predicting_Yelp_Ratings_Using_User_Friendship_Network_Information.pdf
http://snap.stanford.edu/class/cs224w-2013/projects2013/cs224w-038-final.pdf

Procedures
This chapter contains a reference of all the procedures in the Neo4j Graph

Algorithms library.

qualified
name

description type

algo.allShor
testPaths.st
ream

CALL
algo.allShortestPaths.stream(weightProperty:String{nodeQuery:'labe
lName', relationshipQuery:'relationshipName', defaultValue:1.0,
concurrency:4}) YIELD sourceNodeId, targetNodeId, distance -
yields a stream of {sourceNodeId, targetNodeId, distance}

procedure

algo.article
Rank

CALL algo.articleRank(label:String, relationship:String,
{iterations:5, dampingFactor:0.85, weightProperty: null, write:
true, writeProperty:'articlerank', concurrency:4}) YIELD nodes,
iterations, loadMillis, computeMillis, writeMillis, dampingFactor,
write, writeProperty - calculates page rank and potentially writes
back

procedure

algo.article
Rank.stream

CALL algo.articleRank.stream(label:String, relationship:String,
{iterations:20, dampingFactor:0.85, weightProperty: null,
concurrency:4}) YIELD node, score - calculates page rank and
streams results

procedure

algo.shortes
tPath.astar.
stream

CALL algo.shortestPath.astar.stream(startNode:Node, endNode:Node,
weightProperty:String,
propertyKeyLat:String,propertyKeyLon:String,
{nodeQuery:'labelName', relationshipQuery:'relationshipName',
direction:'BOTH', defaultValue:1.0}) YIELD nodeId, cost - yields a
stream of {nodeId, cost} from start to end (inclusive)

procedure

algo.balance
dTriads

CALL algo.balancedTriads(label, relationship{concurrency:4,
write:true, weightProperty:'w', balancedProperty:'balanced',
unbalancedProperty:'unbalanced'}) YIELD loadMillis, computeMillis,
writeMillis, nodeCount, balancedTriadCount, unbalancedTriadCount

procedure

algo.balance
dTriads.stre
am

CALL algo.balancedTriads.stream(label, relationship,
{concurrency:8}) YIELD nodeId, balanced, unbalanced

procedure

algo.between
ness

CALL algo.betweenness(label:String, relationship:String,
{direction:'out',write:true, writeProperty:'centrality',
stats:true, concurrency:4}) YIELD loadMillis, computeMillis,
writeMillis, nodes, minCentrality, maxCentrality, sumCentrality -
yields status of evaluation

procedure

algo.between
ness.sampled
.stream

CALL algo.betweenness.sampled.stream(label:String,
relationship:String, {strategy:{'random', 'degree'},
probability:double, maxDepth:int, direction:String,
concurrency:int}) YIELD nodeId, centrality - yields centrality for
each node

procedure

algo.between
ness.sampled

CALL algo.betweenness.sampled(label:String, relationship:String,
{strategy:'random', probability:double, maxDepth:5,
direction:'out',write:true, writeProperty:'centrality',
stats:true, concurrency:4}) YIELD loadMillis, computeMillis,
writeMillis, nodes, minCentrality, maxCentrality, sumCentrality -
yields status of evaluation

procedure

algo.between
ness.stream

CALL algo.betweenness.stream(label:String, relationship:String,
{direction:'out', concurrency :4})YIELD nodeId, centrality -
yields centrality for each node

procedure

20

qualified
name

description type

algo.bfs.str
eam

CALL algo.bfs.stream(label:String, relationshipType:String,
startNodeId:long, direction:Direction, {writeProperty:String,
target:long, maxDepth:long, weightProperty:String,
maxCost:double}) YIELD nodeId

procedure

algo.closene
ss

CALL algo.closeness(label:String, relationship:String,
{write:true, writeProperty:'centrality, concurrency:4'}) YIELD
loadMillis, computeMillis, writeMillis, nodes] - yields evaluation
details

procedure

algo.closene
ss.stream

CALL algo.closeness.stream(label:String,
relationship:String{concurrency:4}) YIELD nodeId, centrality -
yields centrality for each node

procedure

algo.similar
ity.cosine

CALL algo.similarity.cosine([{item:id, weights:[weights]}],
{similarityCutoff:-1,degreeCutoff:0}) YIELD p50, p75, p90, p99,
p999, p100 - computes cosine similarities

procedure

algo.similar
ity.cosine.s
tream

CALL algo.similarity.cosine.stream([{item:id, weights:[weights]}],
{similarityCutoff:-1,degreeCutoff:0}) YIELD item1, item2, count1,
count2, intersection, similarity - computes cosine distance

procedure

algo.closene
ss.dangalche
v

CALL algo.closeness.dangalchev(label:String, relationship:String,
{write:true, writeProperty:'centrality, concurrency:4'}) YIELD
loadMillis, computeMillis, writeMillis, nodes] - yields evaluation
details

procedure

algo.closene
ss.dangalche
v.stream

CALL algo.closeness.dangalchev.stream(label:String,
relationship:String{concurrency:4}) YIELD nodeId, centrality -
yields centrality for each node

procedure

algo.spannin
gTree

CALL algo.spanningTree(label:String, relationshipType:String,
weightProperty:String, startNodeId:long, {writeProperty:String})
YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount

procedure

algo.degree CALL algo.degree(label:String, relationship:String, {
weightProperty: null, write: true, writeProperty:'degree',
concurrency:4}) YIELD nodes, iterations, loadMillis,
computeMillis, writeMillis, dampingFactor, write, writeProperty -
calculates degree centrality and potentially writes back

procedure

algo.degree.
stream

CALL algo.degree.stream(label:String, relationship:String,
{weightProperty: null, concurrency:4}) YIELD node, score -
calculates degree centrality and streams results

procedure

algo.shortes
tPath.deltaS
tepping

CALL algo.shortestPath.deltaStepping(startNode:Node,
weightProperty:String, delta:Double{label:'labelName',
relationship:'relationshipName', defaultValue:1.0, write:true,
writeProperty:'sssp'}) YIELD loadDuration, evalDuration,
writeDuration, nodeCount

procedure

algo.shortes
tPath.deltaS
tepping.stre
am

CALL algo.shortestPath.deltaStepping.stream(startNode:Node,
weightProperty:String, delta:Double{label:'labelName',
relationship:'relationshipName', defaultValue:1.0, concurrency:4})
YIELD nodeId, distance - yields a stream of {nodeId, distance}
from start to end (inclusive)

procedure

algo.mst CALL algo.mst(label:String, relationshipType:String,
weightProperty:String, startNodeId:long, {writeProperty:String})
YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount

procedure

algo.dfs.str
eam

CALL algo.dfs.stream(label:String, relationshipType:String,
startNodeId:long, direction:Direction, {writeProperty:String,
target:long, maxDepth:long, weightProperty:String,
maxCost:double}) YIELD nodeId

procedure

21

qualified
name

description type

algo.shortes
tPaths

CALL algo.shortestPaths(startNode:Node,
weightProperty:String{write:true, targetProperty:'path',
nodeQuery:'labelName', relationshipQuery:'relationshipName',
defaultValue:1.0}) YIELD loadDuration, evalDuration,
writeDuration, nodeCount, targetProperty - yields nodeCount,
totalCost, loadDuration, evalDuration

procedure

algo.shortes
tPaths.strea
m

CALL algo.shortestPaths.stream(startNode:Node,
weightProperty:String{nodeQuery:'labelName',
relationshipQuery:'relationshipName', defaultValue:1.0}) YIELD
nodeId, distance - yields a stream of {nodeId, cost} from start to
end (inclusive)

procedure

algo.similar
ity.euclidea
n

CALL algo.similarity.euclidean([{item:id, weights:[weights]}],
{similarityCutoff:-1,degreeCutoff:0}) YIELD p50, p75, p90, p99,
p999, p100 - computes euclidean similarities

procedure

algo.similar
ity.euclidea
n.stream

CALL algo.similarity.euclidean.stream([{item:id,
weights:[weights]}], {similarityCutoff:-1,degreeCutoff:0}) YIELD
item1, item2, count1, count2, intersection, similarity - computes
euclidean distance

procedure

algo.scc.for
wardBackward
.stream

CALL algo.scc.forwardBackward.stream(long startNodeId,
label:String, relationship:String, {write:true, concurrency:4})
YIELD nodeId, partition

procedure

algo.closene
ss.harmonic

CALL algo.closeness.harmonic(label:String, relationship:String,
{write:true, writeProperty:'centrality, concurrency:4'}) YIELD
loadMillis, computeMillis, writeMillis, nodes] - yields evaluation
details

procedure

algo.closene
ss.harmonic.
stream

CALL algo.closeness.harmonic.stream(label:String,
relationship:String{concurrency:4}) YIELD nodeId, centrality -
yields centrality for each node

procedure

algo.graph.i
nfo

CALL algo.graph.info(name:String procedure

algo.similar
ity.jaccard

CALL algo.similarity.jaccard([{item:id, categories:[ids]}],
{similarityCutoff:-1,degreeCutoff:0}) YIELD p50, p75, p90, p99,
p999, p100 - computes jaccard similarities

procedure

algo.spannin
gTree.kmax

CALL algo.spanningTree.kmax(label:String, relationshipType:String,
weightProperty:String, startNodeId:long, k:int,
{writeProperty:String}) YIELD loadMillis, computeMillis,
writeMillis, effectiveNodeCount

procedure

algo.spannin
gTree.kmin

CALL algo.spanningTree.kmin(label:String, relationshipType:String,
weightProperty:String, startNodeId:long, k:int,
{writeProperty:String}) YIELD loadMillis, computeMillis,
writeMillis, effectiveNodeCount

procedure

algo.labelPr
opagation

CALL algo.labelPropagation(label:String, relationship:String,
direction:String, {iterations:1, weightProperty:'weight',
partitionProperty:'partition', write:true, concurrency:4}) YIELD
nodes, iterations, didConverge, loadMillis, computeMillis,
writeMillis, write, weightProperty, partitionProperty - simple
label propagation kernel

procedure

algo.labelPr
opagation.st
ream

CALL algo.labelPropagation.stream(label:String,
relationship:String, config:Map<String, Object>) YIELD nodeId,
label

procedure

algo.list CALL algo.list - lists all algorithm procedures, their description
and signature

procedure

22

qualified
name

description type

algo.graph.l
oad

CALL algo.graph.load(name:String, label:String,
relationship:String{direction:'OUT/IN/BOTH',
undirected:true/false, sorted:true/false, nodeProperty:'value',
nodeWeight:'weight', relationshipWeight: 'weight',
graph:'heavy/huge/cypher'}) YIELD nodes, relationships,
loadMillis, computeMillis, writeMillis, write, nodeProperty,
nodeWeight, relationshipWeight - load named graph

procedure

algo.louvain CALL algo.louvain(label:String, relationship:String,
{weightProperty:'weight', defaultValue:1.0, write: true,
writeProperty:'community', concurrency:4,
communityProperty:'propertyOfPredefinedCommunity',
innerIterations:10, communitySelection:'classic'}) YIELD nodes,
communityCount, iterations, loadMillis, computeMillis, writeMillis

procedure

algo.louvain
.stream

CALL algo.louvain.stream(label:String, relationship:String,
{weightProperty:'propertyName', defaultValue:1.0, concurrency:4,
communityProperty:'propertyOfPredefinedCommunity',
innerIterations:10, communitySelection:'classic') YIELD nodeId,
community - yields a setId to each node id

procedure

algo.spannin
gTree.maximu
m

CALL algo.spanningTree.maximum(label:String,
relationshipType:String, weightProperty:String, startNodeId:long,
{writeProperty:String}) YIELD loadMillis, computeMillis,
writeMillis, effectiveNodeCount

procedure

algo.spannin
gTree.minimu
m

CALL algo.spanningTree.minimum(label:String,
relationshipType:String, weightProperty:String, startNodeId:long,
{writeProperty:String}) YIELD loadMillis, computeMillis,
writeMillis, effectiveNodeCount

procedure

algo.scc.mul
tistep

CALL algo.scc.multistep(label:String, relationship:String,
{write:true, concurrency:4, cutoff:100000}) YIELD loadMillis,
computeMillis, writeMillis, setCount, maxSetSize, minSetSize

procedure

algo.scc.mul
tistep.strea
m

CALL algo.scc.multistep.stream(label:String, relationship:String,
{write:true, concurrency:4, cutoff:100000}) YIELD nodeId,
partition

procedure

algo.similar
ity.overlap

CALL algo.similarity.overlap([{item:id, targets:[ids]}],
{similarityCutoff:-1,degreeCutoff:0}) YIELD p50, p75, p90, p99,
p999, p100 - computes overlap similarities

procedure

algo.pageRan
k

CALL algo.pageRank(label:String, relationship:String,
{iterations:5, dampingFactor:0.85, weightProperty: null, write:
true, writeProperty:'pagerank', concurrency:4}) YIELD nodes,
iterations, loadMillis, computeMillis, writeMillis, dampingFactor,
write, writeProperty - calculates page rank and potentially writes
back

procedure

algo.pageRan
k.stream

CALL algo.pageRank.stream(label:String, relationship:String,
{iterations:20, dampingFactor:0.85, weightProperty: null,
concurrency:4}) YIELD node, score - calculates page rank and
streams results

procedure

algo.similar
ity.pearson

CALL algo.similarity.pearson([{item:id, weights:[weights]}],
{similarityCutoff:-1,degreeCutoff:0}) YIELD p50, p75, p90, p99,
p999, p100 - computes cosine similarities

procedure

algo.similar
ity.pearson.
stream

CALL algo.similarity.pearson.stream([{item:id,
weights:[weights]}], {similarityCutoff:-1,degreeCutoff:0}) YIELD
item1, item2, count1, count2, intersection, similarity - computes
cosine distance

procedure

23

qualified
name

description type

algo.randomW
alk.stream

CALL algo.randomWalk.stream(start:null=all/[ids]/label, steps,
walks, {graph: 'heavy/cypher', nodeQuery:nodeLabel/query,
relationshipQuery:relType/query, mode:random/node2vec, return:1.0,
inOut:1.0, path:false/true concurrency:4, direction:'BOTH'}) YIELD
nodes, path - computes random walks from given starting points

procedure

algo.graph.r
emove

CALL algo.graph.remove(name:String procedure

algo.scc CALL algo.scc(label:String, relationship:String,
config:Map<String, Object>) YIELD loadMillis, computeMillis,
writeMillis, setCount, maxSetSize, minSetSize

procedure

algo.scc.str
eam

CALL algo.scc.stream(label:String, relationship:String,
config:Map<String, Object>) YIELD loadMillis, computeMillis,
writeMillis, setCount, maxSetSize, minSetSize

procedure

algo.scc.ite
rative

CALL algo.scc.iterative(label:String, relationship:String,
config:Map<String, Object>) YIELD loadMillis, computeMillis,
writeMillis, setCount, maxSetSize, minSetSize

procedure

algo.scc.ite
rative.strea
m

CALL algo.scc.iterative.stream(label:String, relationship:String,
config:Map<String, Object>) YIELD nodeId, partition

procedure

algo.scc.rec
ursive.tarja
n

CALL algo.scc.tarjan(label:String, relationship:String,
config:Map<String, Object>) YIELD loadMillis, computeMillis,
writeMillis, setCount, maxSetSize, minSetSize

procedure

algo.scc.rec
ursive.tuned
Tarjan

CALL algo.scc.recursive.tunedTarjan(label:String,
relationship:String, config:Map<String, Object>) YIELD loadMillis,
computeMillis, writeMillis, setCount, maxSetSize, minSetSize

procedure

algo.scc.rec
ursive.tuned
Tarjan.strea
m

CALL algo.scc.recursive.tunedTarjan.stream(label:String,
relationship:String, config:Map<String, Object>) YIELD nodeId,
partition

procedure

algo.similar
ity.overlap.
stream

CALL algo.similarity.overlap.stream([{item:id, targets:[ids]}],
{similarityCutoff:-1,degreeCutoff:0}) YIELD item1, item2, count1,
count2, intersection, similarity - computes overlap similarities

procedure

algo.infoMap
.stream

CALL algo.infoMap.stream('Label', 'REL', {<properties>}) YIELD
nodeId, community

procedure

algo.triangl
eCount.forkJ
oin

CALL algo.triangleCount.forkJoin(label, relationship,
{concurrency:4, write:true, writeProperty:'triangles',
clusteringCoefficientProperty:'coefficient'}) YIELD loadMillis,
computeMillis, writeMillis, nodeCount, triangleCount,
averageClusteringCoefficient

procedure

algo.triangl
eCount.forkJ
oin.stream

CALL algo.triangleCount.forkJoin.stream(label, relationship,
{concurrency:8}) YIELD nodeId, triangles - yield nodeId, number of
triangles

procedure

algo.triangl
eCount

CALL algo.triangleCount(label, relationship, {concurrency:4,
write:true, writeProperty:'triangles',
clusteringCoefficientProperty:'coefficient'}) YIELD loadMillis,
computeMillis, writeMillis, nodeCount, triangleCount,
averageClusteringCoefficient

procedure

algo.triangl
eCount.strea
m

CALL algo.triangleCount.stream(label, relationship,
{concurrency:8}) YIELD nodeId, triangles - yield nodeId, number of
triangles

procedure

algo.triangl
e.stream

CALL algo.triangle.stream(label, relationship, {concurrency:4})
YIELD nodeA, nodeB, nodeC - yield nodeA, nodeB and nodeC which
form a triangle

procedure

24

qualified
name

description type

algo.unionFi
nd.forkJoin

CALL algo.unionFind(label:String, relationship:String,
{property:'weight', threshold:0.42, defaultValue:1.0, write: true,
partitionProperty:'partition',concurrency:4}) YIELD nodes,
setCount, loadMillis, computeMillis, writeMillis

procedure

algo.unionFi
nd.forkJoin.
stream

CALL algo.unionFind.stream(label:String, relationship:String,
{property:'propertyName', threshold:0.42,
defaultValue:1.0,concurrency:4}) YIELD nodeId, setId - yields a
setId to each node id

procedure

algo.eigenve
ctor

CALL algo.eigenvector(label:String, relationship:String,
{weightProperty: null, write: true, writeProperty:'eigenvector',
concurrency:4}) YIELD nodes, iterations, loadMillis,
computeMillis, writeMillis, dampingFactor, write, writeProperty -
calculates eigenvector centrality and potentially writes back

procedure

algo.infoMap TODO procedure

algo.kShorte
stPaths

CALL algo.kShortestPaths(startNode:Node, endNode:Node, k:int,
weightProperty:String{nodeQuery:'labelName',
relationshipQuery:'relationshipName', direction:'OUT',
defaultValue:1.0, maxDepth:42, write:'true',
writePropertyPrefix:'PATH_'}) YIELD resultCount, loadMillis,
evalMillis, writeMillis - yields resultCount, loadMillis,
evalMillis, writeMillis

procedure

algo.kShorte
stPaths.stre
am

CALL algo.kShortestPaths.stream(startNode:Node, endNode:Node,
k:int, weightProperty:String{nodeQuery:'labelName',
relationshipQuery:'relationshipName', direction:'OUT',
defaultValue:1.0, maxDepth:42}) YIELD sourceNodeId, targetNodeId,
nodeIds, costs

procedure

algo.Infinit
y

CALL algo.Infinity() - returns Double.POSITIVE_INFINITY as a
value.

function

algo.NaN CALL algo.NaN() - returns Double.NaN as a value. function

algo.linkpre
diction.adam
icAdar

algo.linkprediction.adamicAdar(node1:Node, node2:Node,
{relationshipQuery:'relationshipName', direction:'BOTH'}) given
two nodes, calculate Adamic Adar similarity

function

algo.asNode CALL algo.asNode(value) - return node for nodeId. null if none
exists

function

algo.asNodes CALL algo.asNodes(values) - return nodes for nodeIds. empty if
none exists

function

algo.linkpre
diction.comm
onNeighbors

algo.linkprediction.commonNeighbors(node1:Node, node2:Node,
{relationshipQuery:'relationshipName', direction:'BOTH'}) given
two nodes, returns the number of common neighbors

function

algo.similar
ity.cosine

algo.similarity.cosine([vector1], [vector2]) given two collection
vectors, calculate cosine similarity

function

algo.similar
ity.euclidea
nDistance

algo.similarity.euclideanDistance([vector1], [vector2]) given two
collection vectors, calculate the euclidean distance (square root
of the sum of the squared differences)

function

algo.similar
ity.euclidea
n

algo.similarity.euclidean([vector1], [vector2]) given two
collection vectors, calculate similarity based on euclidean
distance

function

algo.getNode
ById

CALL algo.getNodeById(value) - return node for nodeId. null if
none exists

function

algo.getNode
sById

CALL algo.getNodesById(values) - return nodes for nodeIds. empty
if none exists

function

algo.isFinit
e

CALL algo.isFinite(value) - return true iff the given argument is
a finite value (not ± Infinity, NaN, or null), false otherwise.

function

25

qualified
name

description type

algo.isInfin
ite

CALL algo.isInfinite(value) - return true iff the given argument
is not a finite value (± Infinity, NaN, or null), false otherwise.

function

algo.similar
ity.jaccard

algo.similarity.jaccard([vector1], [vector2]) given two collection
vectors, calculate jaccard similarity

function

algo.ml.oneH
otEncoding

CALL algo.ml.oneHotEncoding(availableValues, selectedValues) -
return a list of selected values in a one hot encoding format.

function

algo.similar
ity.overlap

algo.similarity.overlap([vector1], [vector2]) given two collection
vectors, calculate overlap similarity

function

algo.similar
ity.pearson

algo.similarity.pearson([vector1], [vector2]) given two collection
vectors, calculate pearson similarity

function

algo.linkpre
diction.pref
erentialAtta
chment

algo.linkprediction.preferentialAttachment(node1:Node, node2:Node,
{relationshipQuery:'relationshipName', direction:'BOTH'}) given
two nodes, calculate Preferential Attachment

function

algo.linkpre
diction.reso
urceAllocati
on

algo.linkprediction.resourceAllocation(node1:Node, node2:Node,
{relationshipQuery:'relationshipName', direction:'BOTH'}) given
two nodes, calculate Resource Allocation similarity

function

algo.linkpre
diction.same
Community

algo.linkprediction.sameCommunity(node1:Node, node2:Node,
communityProperty: String) given two nodes, indicates if they have
the same community

function

algo.linkpre
diction.tota
lNeighbors

algo.linkprediction.totalNeighbors(node1:Node, node2:Node,
{relationshipQuery:'relationshipName', direction:'BOTH'}) given
two nodes, calculate Total Neighbors

function

algo.version RETURN algo.version() | return the current graph algorithms
installed version

function

26

Centrality algorithms
This chapter provides explanations and examples for each of the centrality

algorithms in the Neo4j Graph Algorithms library.

The following centrality algorithms determine the importance of distinct nodes in a network:

¥ PageRank (algo.pageRank)

¥ ArticleRank (algo.articleRank)

¥ Betweenness Centrality (algo.betweenness)

¥ Closeness Centrality (algo.closeness)

¥ Harmonic Centrality (algo.closeness.harmonic)

¥ Eigenvector Centrality (algo.eigenvector)

¥ Degree Centrality (algo.degree)

The PageRank algorithm

This section describes the PageRank algorithm in the Neo4j Graph

Algorithms library.

PageRank is an algorithm that measures the transitive influence or connectivity of nodes.

It can be computed by either iteratively distributing one nodeÕs rank (originally based on degree)
over its neighbours or by randomly traversing the graph and counting the frequency of hitting each
node during these walks.

PageRank is a variant of Eigenvector Centrality .

This section includes:

¥ History and explanation

¥ Use-cases - when to use the PageRank algorithm

¥ Constraints - when not to use the PageRank algorithm

¥ PageRank algorithm sample

¥ Weighted PageRank algorithm sample

" Personalized PageRank

¥ Example usage

¥ Huge graph projection

¥ Cypher projection

¥ Syntax

27

¥ Graph type support

History and explanation

PageRank is named after Google co-founder Larry Page, and is used to rank websites in GoogleÕs
search results. It counts the number, and quality, of links to a page which determines an estimation
of how important the page is. The underlying assumption is that pages of importance are more
likely to receive a higher volume of links from other pages.

PageRank is defined in the original Google paper as follows:

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

where,

¥ we assume that a page A has pages T1 to Tn which point to it (i.e., are citations).

¥ d is a damping factor which can be set between 0 and 1. It is usually set to 0.85.

¥ C(A) is defined as the number of links going out of page A.

Use-cases - when to use the PageRank algorithm

PageRank can be applied across a wide range of domains. The following are some notable use-
cases:

¥ Personalized PageRank is used by Twitter to present users with recommendations of other
accounts that they may wish to follow. The algorithm is run over a graph which contains shared
interests and common connections. Their approach is described in more detail in "WTF: The
Who to Follow Service at Twitter" .

¥ PageRank has been used to rank public spaces or streets, predicting traffic flow and human
movement in these areas. The algorithm is run over a graph which contains intersections
connected by roads, where the PageRank score reflects the tendency of people to park, or end
their journey, on each street. This is described in more detail in "Self-organized Natural Roads
for Predicting Traffic Flow: A Sensitivity Study" .

¥ PageRank can be used as part of an anomaly or fraud detection system in the healthcare and
insurance industries. It can help find doctors or providers that are behaving in an unusual
manner, and then feed the score into a machine learning algorithm.

There are many more use cases, which you can read about in David GleichÕs "PageRank beyond the
web"

Constraints - when not to use the PageRank algorithm

There are some things to be aware of when using the PageRank algorithm:

¥ If there are no links from within a group of pages to outside of the group, then the group is
considered a spider trap.

28

https://web.stanford.edu/~rezab/papers/wtf_overview.pdf
https://web.stanford.edu/~rezab/papers/wtf_overview.pdf
https://arxiv.org/pdf/0804.1630.pdf
https://arxiv.org/pdf/0804.1630.pdf
https://arxiv.org/pdf/1407.5107.pdf
https://arxiv.org/pdf/1407.5107.pdf

¥ Rank sink can occur when a network of pages form an infinite cycle.

¥ Dead-ends occur when pages have no out-links. If a page contains a link to another page which
has no out-links, the link would be known as a dangling link.

If you see unexpected results from running the algorithm, it is worth doing some exploratory
analysis of the graph to see if any of these problems are the cause. You can read The Google
PageRank Algorithm and How It Works to learn more.

PageRank algorithm sample

This sample will explain the PageRank algorithm, using a simple graph:

29

http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm
http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm

The following will create a sample graph:

MERGE (home:Page {name:'Home'})
MERGE (about:Page {name:'About'})
MERGE (product:Page {name:'Product'})
MERGE (links:Page {name:'Links'})
MERGE (a:Page {name:'Site A'})
MERGE (b:Page {name:'Site B'})
MERGE (c:Page {name:'Site C'})
MERGE (d:Page {name:'Site D'})

MERGE (home)-[:LINKS]->(about)
MERGE (about)-[:LINKS]->(home)
MERGE (product)-[:LINKS]->(home)
MERGE (home)-[:LINKS]->(product)
MERGE (links)-[:LINKS]->(home)
MERGE (home)-[:LINKS]->(links)
MERGE (links)-[:LINKS]->(a)
MERGE (a)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(b)
MERGE (b)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(c)
MERGE (c)-[:LINKS]->(home)
MERGE (links)-[:LINKS]->(d)
MERGE (d)-[:LINKS]->(home)

The following will run the algorithm and stream results:

CALL algo.pageRank.stream('Page', 'LINKS', {iterations:20, dampingFactor:0.85})
YIELD nodeId, score

RETURN algo.asNode(nodeId).name AS page,score
ORDER BY score DESC

The following will run the algorithm and write back results:

CALL algo.pageRank('Page', 'LINKS',
Ê {iterations:20, dampingFactor:0.85, write: true,writeProperty:"pagerank"})
YIELD nodes, iterations, loadMillis, computeMillis, writeMillis, dampingFactor, write,
writeProperty

Table 1. Results

Name PageRank

Home 3.232

Product 1.059

Links 1.059

About 1.059

30

Name PageRank

Site A 0.328

Site B 0.328

Site C 0.328

Site D 0.328

As we might expect, the Home page has the highest PageRank because it has incoming links from all
other pages. We can also see that itÕs not only the number of incoming links that is important, but
also the importance of the pages behind those links.

Weighted PageRank algorithm sample

This sample will explain the PageRank algorithm, using a simple graph:

0.8

1.
0

1.0

1.0

1.0

1.
0

1.0

0.2

0.
6

0.2

0.05

0.
05

0.
05

0.
05

Links

Home

Site D

Site C

Site B

Site A

Product

About

31

The following will create a sample graph:

MERGE (home:Page {name:'Home'})
MERGE (about:Page {name:'About'})
MERGE (product:Page {name:'Product'})
MERGE (links:Page {name:'Links'})
MERGE (a:Page {name:'Site A'})
MERGE (b:Page {name:'Site B'})
MERGE (c:Page {name:'Site C'})
MERGE (d:Page {name:'Site D'})

MERGE (home)-[:LINKS {weight: 0.2}]->(about)
MERGE (home)-[:LINKS {weight: 0.2}]->(links)
MERGE (home)-[:LINKS {weight: 0.6}]->(product)

MERGE (about)-[:LINKS {weight: 1.0}]->(home)

MERGE (product)-[:LINKS {weight: 1.0}]->(home)

MERGE (a)-[:LINKS {weight: 1.0}]->(home)

MERGE (b)-[:LINKS {weight: 1.0}]->(home)

MERGE (c)-[:LINKS {weight: 1.0}]->(home)

MERGE (d)-[:LINKS {weight: 1.0}]->(home)

MERGE (links)-[:LINKS {weight: 0.8}]->(home)
MERGE (links)-[:LINKS {weight: 0.05}]->(a)
MERGE (links)-[:LINKS {weight: 0.05}]->(b)
MERGE (links)-[:LINKS {weight: 0.05}]->(c)
MERGE (links)-[:LINKS {weight: 0.05}]->(d)

The following will run the algorithm and stream results:

CALL algo.pageRank.stream('Page', 'LINKS', {
Ê iterations:20, dampingFactor:0.85, weightProperty: "weight"
})
YIELD nodeId, score

RETURN algo.asNode(nodeId).name AS page,score
ORDER BY score DESC

32

The following will run the algorithm and write back results:

CALL algo.pageRank('Page', 'LINKS',{
Ê iterations:20, dampingFactor:0.85, write: true, writeProperty:"pagerank",
weightProperty: "weight"
})
YIELD nodes, iterations, loadMillis, computeMillis, writeMillis, dampingFactor, write,
writeProperty

Table 2. Results

Name PageRank

Home 3.550

Product 1.953

Links 0.7509

About 0.7509

Site A 0.1816

Site B 0.1816

Site C 0.1816

Site D 0.1816

As we might expect, the Home page has the highest PageRank because it has incoming links from all
other pages. ItÕs even more important now that the Links page links to it with a high weight. The
Product page has now become the 2nd most important page in its own right because of the high
weighted link from the Home page.

Personalized PageRank

Personalized PageRank is a variation of PageRank which is biased towards a set of sourceNodes. This
variant of PageRank is often used as part of recommender systems .

The following examples show how to run PageRank centered around 'Site A'.

The following will run the algorithm and stream results:

MATCH (siteA:Page {name: "Site A"})

CALL algo.pageRank.stream('Page', 'LINKS', {iterations:20, dampingFactor:0.85,
sourceNodes: [siteA]})
YIELD nodeId, score

RETURN algo.asNode(nodeId).name AS page,score
ORDER BY score DESC

33

https://www.r-bloggers.com/from-random-walks-to-personalized-pagerank/

The following will run the algorithm and write back results:

MATCH (siteA:Page {name: "Site A"})
CALL algo.pageRank('Page', 'LINKS',
{iterations:20, dampingFactor:0.85, sourceNodes: [siteA], write: true,
writeProperty:"ppr"})
YIELD nodes, iterations, loadMillis, computeMillis, writeMillis, dampingFactor, write,
writeProperty
RETURN *

Table 3. Results

Name PageRank

Home 0.399

Site A 0.169

About 0.112

Product 0.112

Links 0.112

Site B 0.019

Site C 0.019

Site D 0.019

Example usage

In this example we will run PageRank on YelpÕs social network to find potential influencers.

When importing the Yelp dataset we stored the social network as a undirected graph . Relationships
in Neo4j always have a direction, but in this domain the direction is irrelevant. If Person A is a
FRIEND with Person B, we can say that Person B is also a FRIEND with Person A.

The default label and relationship-type selection syntax wonÕt work for us here, because it will
project a directed social network. Instead, we can project our undirected social network using
Cypher loading . We can also apply this approach to other algorithms that use Cypher loading .

The following will run the algorithm on Yelp social network:

CALL algo.pageRank.stream(
Ê 'MATCH (u:User) WHERE exists((u)-[:FRIENDS]-()) RETURN id(u) as id',
Ê 'MATCH (u1:User)-[:FRIENDS]-(u2:User) RETURN id(u1) as source, id(u2) as target',
Ê {graph:'cypher'}
) YIELD nodeId,score with algo.asNode(nodeId) as node, score order by score desc limit
10
RETURN node {.name, .review_count, .average_stars,.useful,.yelping_since,.funny},
score

34

https://en.wikipedia.org/wiki/Bidirected_graph

Huge graph projection

The default label and relationship-type projection has a limitation of 2 billion nodes and 2 billion
relationships. Therefore, if our projected graph contains more than 2 billion nodes or relationships,
we will need to use huge graph projection.

Set graph:'huge' in the config:

CALL algo.pageRank('Page','LINKS',
Ê {graph:'huge'})
YIELD nodes, iterations, loadMillis, computeMillis, writeMillis, dampingFactor,
writeProperty;

Cypher projection

If label and relationship-type are not selective enough to describe your subgraph to run the
algorithm on, you can use Cypher statements to load or project subsets of your graph. This can also
be used to run algorithms on a virtual graph. You can learn more in the Cypher projection section
of the manual.

Set graph:'cypher' in the config:

CALL algo.pageRank(
Ê 'MATCH (p:Page) RETURN id(p) as id',
Ê 'MATCH (p1:Page)-[:LINKS]->(p2:Page) RETURN id(p1) as source, id(p2) as target',
Ê {graph:'cypher', iterations:5, write: true}
)

Syntax

The following will run the algorithm and write back results:

CALL algo.pageRank(label:String, relationship:String,
Ê {direction:'OUTGOING', iterations:20, dampingFactor:0.85, write: true,
writeProperty:'pagerank', concurrency:4})
YIELD nodes, iterations, loadMillis, computeMillis, writeMillis, dampingFactor, write,
writeProperty

Table 4. Parameters

Name Type Default Optional Description

label string null yes The label to load from the graph. If null, load all
nodes

relationshi
p

string null yes The relationship-type to load from the graph. If
null, load all relationships

direction string 'OUTGOIN
G'

yes The relationship-direction to use in the
algorithm

35

Name Type Default Optional Description

iterations int 20 yes How many iterations of PageRank to run

concurrenc
y

int available
CPUs

yes The number of concurrent threads

dampingFa
ctor

float 0.85 yes The damping factor of the PageRank calculation

weightPro
perty

string null yes The property name that contains weight. If null,
treats the graph as unweighted. Must be
numeric.

defaultVal
ue

float 0.0 yes The default value of the weight in case it is
missing or invalid

write boolean true yes Specify if the result should be written back as a
node property

graph string 'heavy' yes Use 'heavy' when describing the subset of the
graph with label and relationship-type
parameter. Use 'cypher' for describing the subset
with cypher node-statement and relationship-
statement

Table 5. Results

Name Type Description

nodes int The number of nodes considered

iterations int The number of iterations run

dampingFa
ctor

float The damping factor used

writePrope
rty

string The property name written back to

write boolean Specifies if the result was written back as node property

loadMillis int Milliseconds for loading data

computeMi
llis

int Milliseconds for running the algorithm

writeMillis int Milliseconds for writing result data back

The following will run the algorithm and stream results:

CALL algo.pageRank.stream(label:String, relationship:String,
Ê {direction:'OUTGOING', iterations:20, dampingFactor:0.85, concurrency:4})
YIELD node, score

Table 6. Parameters

Name Type Default Optional Description

label string null yes The label to load from the graph. If null, load all
nodes

36

Name Type Default Optional Description

relationshi
p

string null yes The relationship-type to load from the graph. If
null, load all nodes

direction string 'OUTGOIN
G'

yes The relationship-direction to use in the
algorithm

iterations int 20 yes Specify how many iterations of PageRank to run

concurrenc
y

int available
CPUs

yes The number of concurrent threads

dampingFa
ctor

float 0.85 yes The damping factor of the PageRank calculation

weightPro
perty

string null yes The property name that contains weight. If null,
treats the graph as unweighted. Must be
numeric.

defaultVal
ue

float 0.0 yes The default value of the weight in case it is
missing or invalid

graph string 'heavy' yes Use 'heavy' when describing the subset of the
graph with label and relationship-type
parameter. Use 'cypher' for describing the subset
with cypher node-statement and relationship-
statement

Table 7. Results

Name Type Description

nodeId long Node ID

score float PageRank weight

Graph type support

The PageRank algorithm supports the following graph types:

directed, unweighted:

" direction: 'INCOMING' or 'OUTGOING', weightProperty: null

directed, weighted

" direction: 'INCOMING' or 'OUTGOING', weightProperty : 'weight'

undirected, unweighted

" direction: 'BOTH', weightProperty: null

undirected, weighted

" direction: 'BOTH', weightProperty: 'weight'

The ArticleRank algorithm

This section describes the ArticleRank algorithm in the Neo4j Graph

37

Algorithms library.

ArticleRank is a variant of the PageRank algorithm , which measures the transitive influence or
connectivity of nodes.

This section includes:

¥ History and explanation

¥ ArticleRank algorithm sample

¥ Huge graph projection

¥ Cypher projection

¥ Syntax

¥ Graph type support

History and explanation

Where ArticleRank differs to PageRank is that PageRank assumes that relationships from nodes
that have a low out-degree are more important than relationships from nodes with a higher out-
degree. ArticleRank weakens this assumption.

ArticleRank is defined in ArticleRank: a PageRank "based alternative to numbers of citations for
analysing citation networks as follows:

AR(A) = (1-d) + d (AR(T1)/(C(T1) + C(AVG)) + ... + AR(Tn)/(C(Tn) + C(AVG))

where,

¥ we assume that a page A has pages T1 to Tn which point to it (i.e., are citations).

¥ d is a damping factor which can be set between 0 and 1. It is usually set to 0.85.

¥ C(A) is defined as the number of links going out of page A.

¥ C(AVG) is defined as the average number of links going out of all pages.

ArticleRank algorithm sample

This sample will explain the ArticleRank algorithm, using a simple graph:

38

https://www.emeraldinsight.com/doi/abs/10.1108/00012530911005544
https://www.emeraldinsight.com/doi/abs/10.1108/00012530911005544
https://www.emeraldinsight.com/doi/abs/10.1108/00012530911005544
https://www.emeraldinsight.com/doi/abs/10.1108/00012530911005544

CITES

CITES

CITES

CIT
ES

CITES

C
IT

E
S

CITES

CITES

CITES

CITES

C
IT

E
S

CITES

C
IT

ES

CITES

Paper 4

Paper 0

Paper 3

Paper 2
Paper 1

Paper 6

Paper 5

The following will create a sample graph:

MERGE (paper0:Paper {name:'Paper 0'})
MERGE (paper1:Paper {name:'Paper 1'})
MERGE (paper2:Paper {name:'Paper 2'})
MERGE (paper3:Paper {name:'Paper 3'})
MERGE (paper4:Paper {name:'Paper 4'})
MERGE (paper5:Paper {name:'Paper 5'})
MERGE (paper6:Paper {name:'Paper 6'})

MERGE (paper1)-[:CITES]->(paper0)

MERGE (paper2)-[:CITES]->(paper0)
MERGE (paper2)-[:CITES]->(paper1)

MERGE (paper3)-[:CITES]->(paper0)
MERGE (paper3)-[:CITES]->(paper1)
MERGE (paper3)-[:CITES]->(paper2)

MERGE (paper4)-[:CITES]->(paper0)
MERGE (paper4)-[:CITES]->(paper1)
MERGE (paper4)-[:CITES]->(paper2)
MERGE (paper4)-[:CITES]->(paper3)

MERGE (paper5)-[:CITES]->(paper1)
MERGE (paper5)-[:CITES]->(paper4)

MERGE (paper6)-[:CITES]->(paper1)
MERGE (paper6)-[:CITES]->(paper4)

39

The following will run the algorithm and stream results:

CALL algo.articleRank.stream('Paper', 'CITES', {iterations:20, dampingFactor:0.85})
YIELD nodeId, score
RETURN algo.asNode(nodeId).name AS page,score
ORDER BY score DESC

The following will run the algorithm and write back results:

CALL algo.articleRank('Paper', 'CITES',
Ê {iterations:20, dampingFactor:0.85, write: true,writeProperty:"pagerank"})
YIELD nodes, iterations, loadMillis, computeMillis, writeMillis, dampingFactor, write,
writeProperty

Table 8. Results

Name ArticleRank

Paper 0 0.34616300000000005

Paper 1 0.319422

Paper 4 0.213733

Paper 2 0.21089400000000003

Paper 3 0.18026850000000003

Paper 5 0.15000000000000002

Paper 6 0.15000000000000002

Paper 0 is the most important paper, but itÕs only the 2nd most cited paper - Paper 1 has more
citations. However, Paper 1 cites Paper 0, which lets us see that itÕs not only the number of
incoming links that is important, but also the importance of the papers behind those links. Papers 5
and 6 are not cited by any other papers, so their score doesnÕt increase above the initial score of 1 -
dampingFactor.

Huge graph projection

The default label and relationship-type projection has a limitation of 2 billion nodes and 2 billion
relationships. Therefore, if our projected graph contains more than 2 billion nodes or relationships,
we will need to use huge graph projection.

Set graph:'huge' in the config:

CALL algo.articleRank('Paper','CITES', {graph:'huge'})
YIELD nodes, iterations, loadMillis, computeMillis, writeMillis, dampingFactor,
writeProperty;

Cypher projection

If label and relationship-type are not selective enough to describe your subgraph to run the

40

