Neod4] OGM - An Object Graph
Mapping Library for Neo4;

Table of Contents

PrEfaCE . . d...
INtroduction t0 NEOA]o e 2..
Whatis a graph database? e 2..
ADOUL NBOA] . . e e 2 ..
Querying the Graph with Cypher 2. .
INAEXING . . oot e 8...
LT L0 1= | 8...
INtrOUCHION . . oo e 4. ..
Domain Model e b ..
NEOA OGM . e e 9. ..
ANNOTALIONSo d0. .
Maven DePENUENCYt 40.
NOOES . .o e 0. .
RelatioNShIPS . . . oo dl.
Relationship ENtities dz2.
@Graphld e d3..
CONV B BIS o o it e e d4. .
CON I QUIALION . . . e ds. .
S S 0N, . i e deé. .
QUEBIIES . .t e 9. .
CONCIUSION . . e 20. .
Reference DOCUMENLAtioN 20.
About the Ne0odj OGM Library e e e e e e 21.
Compatibility . . e e 21 .
Multiple driver implementations 21
CYPNET e e 21
Design ConSIderations i e 21
OV IV W . . oo e 23..
Getting Started e 23 .
Adding Neod] Graph QUENES e e e 23.
Managing Relationships e 23.
Y= o) o 23. .
MappPINg StrategieSot 23.
Transactional SUPPOIt e 23.
S U . oot e e 24. .
Dependencies for the Neod] OGM e e e 24,
OGM 2.X Configuration e e e e 25.
TEStNG . . oot e 28. .
OGM 1.X Configuration e e 80.
Session Configuration 81.
Programming MoOdel 83.
Under the bonnet e 83.
Entity Type Representationt e 34.
Simplified Object-Graph Mapping e ab.
Defining Node entities 36.

Relating node entities e 38.

S BS S ON . .t it e 41. .

CONVEISION . 42 .
TraNSACHONS . . . oot 43 .
Entity Management e 43 .
Sorting and Paging 45 .
Configuring the OGM inan HA environment e e 46
Transaction Binding iN HAMOAE e e 46.
Read-only TranSacCtioNSttt et e e 6.
Static binding to a designated master 46
Dynamic binding via aload balancer A7,

LICBNSE . . . ottt e 48. .

© 2016 Neo Technology

License: Creative Commons 3.0

Preface

Introduction to Neo4|

What is a graph database?

A graph database is a storage engine that is specialised in storing and retrieving vast networks of
information. It efficiently stores data as nodes and relationships and allows high performance retrieval
and querying of those structures. Properties can be added to both nodes and relationships. Nodes
can be labelled by zero or more labels, relationships are always directed and named.

Graph databases are well suited for storing most kinds of domain models. In almost all domains,
there are certain things connected to other things. In most other modelling approaches, the
relationships between things are reduced to a single link without identity and attributes. Graph
databases allow to keep the rich relationships that originate from the domain equally well-
represented in the database without resorting to also modelling the relationships as "things". There is
very little "impedance mismatch" when putting real-life domains into a graph database.

About Neo4j

Neo4j (http://neodj.com/) is an open source NOSQL graph database. It is a fully transactional database
(ACID) that stores data structured as graphs consisting of nodes, connected by relationships. Inspired
by the structure of the real world, it allows for high query performance on complex data, while
remaining intuitive and simple for the developer.

Neodj is very well-established. It has been in commercial development for 15 years and in production
for over 12 years. Most importantly, it has an active and contributing community surrounding it, but it
also:

¥ has an intuitive, rich graph-oriented model for data representation. Instead of tables, rows, and
columns, you work with a graph consisting of nodes, relationships, and properties
(http://neodj.com/docs/stable/graphdb-neo4j.html) .

¥ has a disk-based, native storage manager optimised for storing graph structures with maximum
performance and scalability.

¥ is scalable. Neo4j can handle graphs with many billions of nodes/relationships/properties on a
single machine, but can also be scaled out across multiple machines for high availability.

¥ has a powerful graph query language called Cypher, which allows users to efficiently read/write
data by expressing graph patterns.

¥ has a powerful traversal framework and query languages for traversing the graph.

¥ can be deployed as a standalone server, which is the recommended way of using Neo4j

¥ can be deployed as an embedded (in-process) database, giving developers access to its core Java
AP (http://api.neodj.org/)

In addition, Neo4j provides ACID transactions, durable persistence, concurrency control, transaction
recovery, high availability, and more. Neo4j is released under a dual free software/commercial licence
model.

Querying the Graph with Cypher

Neo4j provides a graph query language called Cypher (http://neo4j.com/docs/stable/cypher-query-lang.html)
which draws from many sources. It resembles SQL clauses but is centered around matching iconic
representation of patterns in the graph.

Cypher queries typically begin with a MATCelause, which can be used to provide a way to pattern
match against the graph. Match clauses can introduce new identifiers for nodes and relationships. In
the WHERdtause additional filtering of the result set is applied by evaluating expressions. The RETURN

http://neo4j.com/
http://neo4j.com/docs/stable/graphdb-neo4j.html
http://api.neo4j.org/
http://neo4j.com/docs/stable/cypher-query-lang.html

clause defines which part of the query result will be available to the caller. Aggregation also happens
in the return clause by using aggregation functions on some of the returned values. Sorting can
happen in the ORDER Rtause and the SKIPand LIMIT parts restrict the result set to a certain window.

Cypher are executed against Neo4j Server using an HTTP based protocol which is utilised by Neo4j
OGM.

Cypher Examples on the Movies Dataset

/I Actors who acted in a Matrix movie:
MATCH (movie:Movie)<-[:ACTS_IN]-(actor)
WHERE movie.title =~ 'Matrix.*'

RETURN actor.name, actor.birthplace

/I User-Ratings:

MATCH (user:User {login:'micha’})-[r:RATED]->(movie)
WHERE r.stars > 3

RETURN movie.title, r.stars, r.comment

/I Mutual Friend recommendations:

MATCH (user:User {login:'micha'})-[:FRIEND]-(friend)-[r:RATED]->(movie)
WHERE r.stars > 3

RETURN friend.name, movie.title, r.stars, r.comment

Cypher Examples on the Movies Dataset

/l Movie suggestions based on an actor:

MATCH (movie:Movie)<-[:ACTS_IN]-()-[:ACTS_IN]->(suggestion:Movie)
WHERE id(movie)=13

RETURN suggestion.title, count(*) ORDER BY count(*) DESC LIMIT 5

/I Co-Actors, sorted by count and name of Lucy Liu

MATCH (lucy)-[:ACTS_IN]->(movie)<-[:ACTS_IN]-(co_actor)

WHERE lucy.name='"Lucy Liu'

RETURN count(*), co_actor.name ORDER BY count(*) DESC, co_actor.name LIMIT 20

/I Recommendations including counts, grouping and sorting
MATCH (:User {login:'micha’})-[:FRIEND]-()-[r:RATED]->(movie)
RETURN movie.title, avg(r.stars), count(*) ORDER BY avg(r.stars) DESC, count(*) DESC

Indexing
Neo4jOs schema indexes are used automatically by Cypher when set up in your database. Neo4j OGM

does not provide facilities for handling that setup out of the box. This is a seeding, migration or
maintenance effort handled by the group responsible for the database maintenance.

Tutorial

The first part of this guide is a tutorial that takes the reader through steps necessary to get started
with the Neo4j OGM. Neo4j OGM will power a web application that allows you to manage a CollegeOs
Departments, Teaching Staff, Subjects, Students and Classes.

The complete source code for the application is available on Github (https://github.com/neo4j-
examples/neodj-ogm-university).

https://github.com/neo4j-examples/neo4j-ogm-university

Introduction

Neo4j OGM University is a demo application for the Neo4j OGM library.
Itis a fully functioning web-application built using the following components

¥ Spring Boot

¥ Neodj OGM

¥ Angular.js

¥ Twitter Bootstrap Ul

The applicationOs domain is a fictitious educational institution - Hilly Fields Technical College.

It leverages the power of Spring Boot and in particular the new Neo4j Object Graph mapping
technology to provide a RESTful interface with which the web client interacts. The application is
entirely stateless; every interaction involves a call to a Neo4j server, hopefully demonstrating the
speed of the new technology, even over the wire.

Domain Model

Before we get to any code, we want to whiteboard our graph model.

Our College will contain Departments, each of which offer various subjects taught by a teacher.
Students enroll for courses or classes that teach a subject.

WeOre also going to model a Study Buddy which represents a group of students that get together to
help one another study for a class.

HereOs what we came up with.

TAUGHT_BY
UM Subject =

Class

BUDDY
StudyBuddy

BUDI

UM

Subject

Class

BUDDY

TAUGHT_BY

S
S

StudyBuddy SUDI

UM

Subject
Class
»‘3’0
O
&
&
BUDDY

In Java, this is straightforward-

TAUGHT_BY

StudyBuddy

BUDI

public class Department {
E private String name
E private Set<Subject> subjects ;

—

ublic class Subject {
private String name
private Department department;
private Set<Teacher> teachers;
private Set<Course> courses;

e

= [THTH TH M

public class Teacher {

3

E private String name

E private Set<Course> courses;

E private Set<Subject> subjects ;

}

public class Course {

E private String name

E private Subject subject ;

E private Teacher teacher,

E private Set<Enrollment> enroliments ;
}

public class Student {

E private String name

E private Set<Enroliment> enrollments ;
E private Set<StudyBuddy studyBuddies;
}

public class Enrollment {

private Student student;
E private Course course;
E private Date enrolledDate ;

}

mm

Note that when a student enrolls for a course, weOre going to keep track of the enroliment date. In the
graph, this will be stored as a property on the ENROLLED relationship between a student and a
course. This kind of rich relationship is managed by the class Enroliment and is known as a
relationship entity.

Neo4] OGM

To simplify development, weQOre going to use Neo4j OGM, an object-graph mapping library. Much like
JPA, weOll be annotating our POJOs and this will map them to nodes, relationships and properties in the
graph.

Neo4j OGM 1.x works against server based installations of Neo4j and uses Cypher over the
transactional HTTP endpoint. Neo4j OGM 2.x supports both server mode (HTTP and bolt) and
embedded Neo4j.

Our sample application will use server mode with HTTP.

While the OGM takes care of boilerplate CRUD operations, it also provides us with the flexibility of
writing our own Cypher queries and controlling persistence depth as we shall see later in this tutorial.

Annotations

Neo4j OGM supports mapping annotated and non-annotated objects models. 1tOs possible to save any
POJO with the exception of a Relationship Entity without annotations to the graph. The framework will
then apply conventions to decide what to do.

Maven Dependency

Before we can use any Neo4j OGM annotations, we need to add the maven dependency.
Maven dependencies for Neo4j OGM 2.x

<dependency>
E <groupld>org.neo4j </groupld>

E <artifactld> neo4j-ogm-core</artifactld>

E <version>{version} </version>

</dependency>

<dependency>

E <groupld>org.neo4j </groupld>

E <artifactld> neo4j-ogm-http-driver </artifactld>

E <version>{version} </version>
</dependency>

Refer to Setup for Gradle or vy dependencies.
Note that the dependencies for Neo4j OGM 1.x differ -

Maven dependencies for Neo4j OGM 1.x

<dependency>
E <groupld>org.neo4j </groupld>
E <artifactld> neo4j-ognx/artifactld>

E <version>{version} </version>
</dependency>

Nodes

POJOs annotated with @NodeEntitywill be represented as nodes in the graph. The label assigned to
this node can be specified via the label property on the annotation; if not specified, it will default to
the simple class name of the entity. Each parent class in addition also contributes a label to the entity
(with the exception of java.lang.Object). This is useful when we want to retrieve collections of super
types.

LetOs go ahead and annotate all our node entities. Note that weOre overriding the default label for a
Coursewith Class

10

@NodeEntity

public class Department {

E private String name

E private Set<Subject> subjects ;
}

@NodeEntity

ublic class Subject {
private String name
private Department department;
private Set<Teacher> teachers;
private Set<Course> courses;

O

~ MMM

@NodeEntity
ublic class Teacher {

private String name

private Set<Course> courses;
E private Set<Subject> subjects ;

>~ MM [TPT

@NodeEntitylabel ="Class")

public class Course {

E private String name

E private Subject subject ;

E private Teacher teacher;

E private Set<Enrollment> enroliments ;
}

@NodeEntity

ublic class Student {

e

E private String name
E private Set<Enrollment> enrollments ;
E private Set<StudyBuddy studyBuddies;
}

Relationships

Next up, the relationships between the nodes. Every field in an entity that references another entity is
backed by a relationship in the graph. The @Relationship annotation allows you to specify both the
type of the relationship and the direction. By default, the direction is assumed to be OUTGOINEd the
type is the UPPER_SNAKE_CASE field name. WeOre going to be specific about the relationship type to
avoid using the default and also make it easier to refactor classes later by not being dependent on the
field name.

11

@NodeEntity
public class Department {
private String name

m

[5 @Relationship(type = "CURRICULUM"
E private Set<Subject> subjects ;

—

@NodeEntity
public class Subject {

E private String name

I:E @Relationship(type ="CURRICULUMdirection = Relationship . INCOMING
E private Department department;

E @Relationship(type = "TAUGHT_BY"

E private Set<Teacher> teachers;

E @Relationship(type = "SUBJECT_TAUGHTd lrection = "INCOMING"

E private Set<Course> courses;

}

@NodeEntity

public class Teacher {

E private String name

E @Relationship(type="TEACHES_CLABS"

E private Set<Course> courses;

E @Relationship(type="TAUGHT_BY'tirection = Relationship . INCOMING
E private Set<Subject> subjects ;

}

@NodeEntitylabel ="Class")
public class Course {

E private String name

E @Relationship(type= "SUBJECT_TAUGHT"

E private Subject subject ;

E @Relationship(type= "TEACHES_CLAS®irection =Relationship . INCOMING
E private Teacher teacher;

E @Relationship(type= "ENROLLEP"direction =Relationship . INCOMING

E private Set<Enrollment > enrollments = new HashSe&>();

}

@NodeEntity

public class Student {
private String name

m

E @Relationship(type = "ENROLLEP"

E private Set<Enrollment> enroliments ;

I:E @Relationship(type = "BUDDY" direction = Relationship . INCOMING
E private Set<StudyBuddy studyBuddies;

}

Relationship Entities

We have one more entity, and that is the Enrollment . As discussed earlier, this is a relationship entity
since it manages the underlying ENROLLEElation between a student and course. It isnOt a simple
relation because it has a relationship property called enrolledDate .

A relationship entity must be annotated with ~ @RelationshipEntity and also the type of relationship. In

this case, the type of relationship is ENROLLES specified in both the Student and Courseentities. We
are also going to indicate to the OGM the start and end node of this relationship.

12

@RelationshipEntity (type = "ENROLLEp"
public class Enrollment {

E private Longid;

E @StartNode

E private Student student;
E @EndNode

E private Course course;

E private Date enrolledDate ;
}

@Graphld

Every node and relationship persisted to the graph has an id. Neo4j OGM uses this to identify and re-
connect the entity to the graph. Specifying a Long id field is required. If such a field exists on the entity,

then Neo4j OGM will use it automatically. Otherwise, a Long field must be annotated with

Since every entity requires an id, weQre going to create an Entity superclass. This is an abstract class,

so youOll see that the nodes do not inherit an Entity label, which is exactly what we want.

Also observe the null checks for the id field in the equals and hashCodeThis is required because the id

is null till the entity is persisted to the graph.

public abstract class Entity {

E private Longid;

E public Longgetld () {

E return id;

E }

E @Override

E public boolean equals(Object o) {

E if (this ==0) return true;

E if (o==null || id ==null || getClass() !'= o.getClass()) return false ;
E Entity entity = (Entity) o;

E if (!id.equals(entity .id)) return false ;
E return true ;

E }

E @Override

E public int hashCod§ {

E return (id ==null) ? -1 : id.hashCod§;
E

}

Our entities will now extend this class, for example

@NodeEntity
public class Department extends Entity {

E private String name

E @Relationship(type = "CURRICULUM"
E private Set<Subject> subjects ;

E public Departmen() {

E }

}

13

The OGM also requires an public no-args constructor to be able to construct objects, weOll make sure
all our entities have one.

Converters

Neo4j supports humerics, Strings, booleans and arrays of these as property values. How do we handle
the enrolledDate since Dateis not a valid data type? Luckily for us, Neo4j OGM provides many
converters out of the box, one of which is a Date to Long converter. We simply annotate the field with
@DatelLongnd the conversion of the Date to itOs Long representation and back is handled by the OGM
when persisting and loading from the graph.

@RelationshipEntity (type = "ENROLLEP"
public class Enrollment {

E private Longid;

E @StartNode

E private Student student;
E @EndNode

E private Course course;

E @DateLong

E private Date enrolledDate ;
}

14

Configuration

Since the OGM 2.x works both against a remote server as well as embedded Neo4j, weOll need to
configure it to use the appropriate driver. WeOll allow the OGM to auto-configure itself by providing a

file called ogm.properties in the classpath.

driver=org.neo4j.ogm.drivers.http.driver.HttpDriver
URI=http://username:password@localhost:7474

Here, weOre setting up the HTTP Driver to connect to our local Neo4j server.

OGM 1.x does not require this configuration. Instead, the URL to the Neo4j server is
. provided to the Session described below.

15

Session

So our domain entities are annotated, now weOre ready persist them to the graph!

The smart object mapping capability is provided by the Session. A Session is obtained from a
SessionFactory.

WeOre going to set up the SessionFactory just once and have it produce as many sessions as required.

public class Neo4jSessionFactory {

E private final static SessionFactory sessionFactory = new SessionFactory("“school.domain™);
E private static NeodjSessionFactory factory = new Neo4jSessionFactory();
E public static Neod4jSessionFactory getinstance () {

E return factory ;

E }

E private Neo4jSessionFactory() {

E }

[5 public Session getNeo4jSession() {

E return sessionFactory . openSession();

E }

}

OGM 1.x needs to provide the URL to the Neo4j Server to the openSessionmethod like this

E sessionFactory.openSession("http://localhost:7474");

The SessionFactory constructor accepts packages that are to be scanned for domain metadata. The
domain objects in our university application are grouped under school.domain. When the
SessionFactory is created, it will scan school.domain for potential domain classes and construct the
object mapping metadata to be used by all sessions created thereafter.

A Session requires a URL of the remote Neo4j database. All operations within the session will be
performed against this remote database. The Session keeps track of changes made to entities and
relationships and persists ones that have been modified on save. However, when loading an entity, it
always hits the database and never returns cached objects. This is why the life of the session is
important. For the purpose of this demo application, weOll be refreshing the session frequently and
hence our session is going to be long lived.

Our university application will use the following operations

public interface Service <T> {

E lterable <T> findAll ();

E Tfind (Longid);

E void delete (Longid);

E T createOrUpdate(T object);
}

These CRUD interactions with the graph are all handled by the Session. We wrote GenericService to
deal with Session operations.

16

public abstract class GenericService <T> implements Service <T> {

Eprivate static final int DEPTH_LIS¥ O;
Eprivate static final int DEPTH_ENTIFY1,
BEprivate Session session = Neo4jSessionFactory. getinstance (). getNeo4jSession();

E@Override
Epublic lterable <T> findAll () {
E return session.loadAll (getEntityType (), DEPTH_LIST

g

E@Override

Epublic T find (Longid) {

E return session. load (getEntityType (), id, DEPTH_ENTITY
g

E@Override

Epublic void delete (Longid) {
E session.delete (session.load(getEntityType (), id));

=

E@Override

Epublic T createOrUpdate(T entity) {

E session. save(entity , DEPTH_ENTITY
E return find (((Entity) entity). getld ());
g

Epublic abstract Class<T> getEntityType ();
One of the features of Neo4j OGM is variable depth persistence. This means you can vary the depth of
fetches depending on the shape of your data and application. The default depth is 1, which loads

simple properties of the entity and its immediate relations. This is sufficient for the find method,
which is used in the application to present a create or edit form for an entity.

17

Loading relationships is not required however when listing all entities of a type. We merely require the
id and name of the entity, and so a depth of O is used by findAll to only load simple properties of the
entity but skip its relationships.

18

