
The Neo4j Java Developer
Reference v3.0

Table of Contents
1. Extending Neo4j . Ê2
2. Using Neo4j embedded in Java applications . Ê17
3. The Traversal Framework . Ê48
4. Manual Indexing . Ê55
5. Transaction Management . Ê63
6. Online Backup from Java . Ê70
7. License . Ê71

© 2016 Neo Technology

License: Creative Commons 3.0

This part contains information on advanced usage of Neo4j. Among the topics covered are
embedding Neo4j in your own software and writing extensions for the Neo4j Server.

You might want to keep the Neo4j JavaDocs (javadocs/) handy while reading!

1

javadocs/

Chapter 1. Extending Neo4j
Neo4j provides a pluggable infrastructure for extensions. Procedures extend the capabilities of the
Cypher query language. Server extensions allow new surfaces to be created in the REST API. Both
require the user to be familiar with the Java programming language and to have an environment set
up for compiling Java code.

!

When running your own code and Neo4j in the same JVM, there are a few things
you should keep in mind:

¥ DonÕt create or retain more objects than you strictly need to. Large caches in
particular tend to promote more objects to the old generation, thus increasing
the need for expensive full garbage collections.

¥ DonÕt use internal Neo4j APIs. They are internal to Neo4j and subject to change
without notice, which may break or change the behavior of your code.

¥ If possible, avoid using Java object serialization or reflection in your code or in
any runtime dependency that you use. Otherwise, if you cannot avoid using Java
object serialization and reflection, then ensure that the
-XX:+TrustFinalNonStaticFields JVM flag is disabled in neo4j-wrapper.conf .

1.1. Procedures
User-defined procedures are written in Java, deployed into the database, and called from
Cypher.

A procedure is a mechanism that allows Neo4j to be extended by writing custom code which can be
invoked directly from Cypher. Procedures can take arguments, perform operations on the database,
and return results.

Procedures are written in Java and compiled into jar files. They can be deployed to the database by
dropping a jar file into the $NEO4J_HOME/plugins directory on each standalone or clustered server. The
database must be re-started on each server to pick up new procedures.

Procedures are the preferred means for extending Neo4j. Examples of use cases for procedures are:

1. To provide access to functionality that is not available in Cypher, such as manual indexes and
schema introspection.

2. To provide access to third party systems.

3. To perform graph-global operations, such as counting connected components or finding dense
nodes.

4. To express a procedural operation that is difficult to express declaratively with Cypher.

1.1.1. Calling procedures
To call a stored procedure, use a Cypher CALL clause. The procedure name must be fully qualified, so a
procedure named findDenseNodes defined in the package org.neo4j.examples could be called using:

CALL org.neo4j.examples.findDenseNodes(1000)

A CALL may be the only clause within a Cypher statement or may be combined with other clauses.
Arguments can be supplied directly within the query or taken from the associated parameter set. For
full details, see the Cypher documentation on the CALL clause.

2

1.1.2. Built-in procedures
Neo4j comes bundled with a number of built-in procedures. These are listed in the table below:

Procedure name Command to invoke procedure What it does

ListLabels CALL db.labels() List all labels in the database.

ListRelationshipTypes CALL db.relationshipTypes() List all relationship types in the
database.

ListPropertyKeys CALL db.propertyKeys() List all property keys in the database.

ListIndexes CALL db.indexes() List all indexes in the database.

ListConstraints CALL db.constraints() List all constraints in the database.

ListProcedures CALL dbms.procedures() List all procedures in the DBMS.

ListComponents CALL dbms.components() List DBMS components and their
versions.

QueryJmx CALL dbms.queryJmx(query) Query JMX management data by
domain and name. For instance,
"org.neo4j:*".

AlterUserPassword CALL dbms.changePassword(query) Change the user password.

1.1.3. User-defined procedures

"
The example discussed below is available as a repository on GitHub
(https://github.com/neo4j-examples/neo4j-procedure-template) . To get started quickly you
can fork the repository and work with the code as you follow along in the guide
below.

Custom procedures are written in the Java programming language. Procedures are deployed via a jar
file that contains the code itself along with any dependencies (excluding Neo4j). These files should be
placed into the plugin directory of each standalone database or cluster member and will become
available following the next database restart.

The example that follows shows the steps to create and deploy a new procedure.

Set up a new project

A project can be set up in any way that allows for compiling a procedure and producing a jar file.
Below is an example configuration using the Maven (https://maven.apache.org/) build system. For
readability, only excerpts from the Maven pom.xml file are shown here, the whole file is available from
the Neo4j Procedure Template (https://github.com/neo4j-examples/neo4j-procedure-template) repository.

3

https://github.com/neo4j-examples/neo4j-procedure-template
https://maven.apache.org/
https://github.com/neo4j-examples/neo4j-procedure-template

Setting up a project with Maven

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"
Ê xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
Ê http://maven.apache.org/xsd/maven-4.0.0.xsd" >
Ê<modelVersion>4.0.0 </modelVersion>

Ê<groupId>org.neo4j.example </groupId>
Ê<artifactId> procedure-template </artifactId>
Ê<version>1.0.0-SNAPSHOT</version>

Ê<packaging>jar </packaging>
Ê<name>Neo4j Procedure Template</name>
Ê<description> A template project for building a Neo4j Procedure </description>

Ê<properties>
Ê <neo4j.version> 3.0.0-SNAPSHOT</neo4j.version>
Ê</properties>

Next, the build dependencies are defined. The following two sections are included in the pom.xml
between <dependencies></dependencies> tags.

The first dependency section includes the procedure API that procedures use at runtime. The scope is
set to provided , because once the procedure is deployed to a Neo4j instance, this dependency is
provided by Neo4j. If non-Neo4j dependencies are added to the project, their scope should normally
be compile.

Ê <dependency>
Ê <groupId>org.neo4j </groupId>
Ê <artifactId> neo4j</artifactId>
Ê <version>${neo4j.version} </version>
Ê <scope>provided </scope>
Ê </dependency>

Next, the dependencies necessary for testing the procedure are added:

¥ Neo4j Harness, a utility that allows for starting a lightweight Neo4j instance. It is used to start
Neo4j with a specific procedure deployed, which greatly simplifies testing.

¥ The Neo4j Java driver, used to send cypher statements that call the procedure.

¥ JUnit, a common Java test framework.

Ê <dependency>
Ê <groupId>org.neo4j.test </groupId>
Ê <artifactId> neo4j-harness </artifactId>
Ê <version>${neo4j.version} </version>
Ê <scope>test </scope>
Ê </dependency>

Ê <dependency>
Ê <groupId>org.neo4j.driver </groupId>
Ê <artifactId> neo4j-java-driver </artifactId>
Ê <version>1.0-SNAPSHOT</version>
Ê <scope>test </scope>
Ê </dependency>

Ê <dependency>
Ê <groupId>junit </groupId>
Ê <artifactId> junit </artifactId>
Ê <version>4.12</version>
Ê <scope>test </scope>
Ê </dependency>

Along with declaring the dependencies used by the procedure it is also necessary to define the steps
that Maven will go through to build the project. The goal is first to compile the source, then to package
it in a jar that can be deployed to a Neo4j instance.

4

Procedures require at least Java 8, so the version 1.8 should be defined as the
source and target version in the configuration for the Maven compiler plugin.

The Maven Shade (https://maven.apache.org/plugins/maven-shade-plugin/) plugin is used to package the
compiled procedure. It also includes all dependencies in the package, unless the dependency scope is
set to test or provided.

Once the procedure has been deployed to the plugins directory of each Neo4j instance and the
instances have restarted, the procedure is available for use.

Ê <build>
Ê <plugins>
Ê <plugin>
Ê <artifactId> maven-compiler-plugin </artifactId>
Ê <configuration>
Ê <source>1.8</source>
Ê <target> 1.8</target>
Ê </configuration>
Ê </plugin>
Ê <plugin>
Ê <artifactId> maven-shade-plugin</artifactId>
Ê <executions>
Ê <execution>
Ê <phase>package</phase>
Ê <goals>
Ê <goal>shade</goal>
Ê </goals>
Ê </execution>
Ê </executions>
Ê </plugin>
Ê </plugins>
Ê </build>

Until the GA release of Neo4j 3.0, the dependency on Neo4j requires that a snapshot repository is
configured. This repository is where Maven will find the latest build of Neo4j to use as a dependency.

Ê <repositories>
Ê <repository>
Ê <id>neo4j-snapshot-repository </id>
Ê <name>Maven 2 snapshot repository for Neo4j </name>
Ê <url> http://m2.neo4j.org/content/repositories/snapshots </url>
Ê <snapshots><enabled>true </enabled></snapshots>
Ê <releases><enabled>false </enabled></releases>
Ê </repository>
Ê </repositories>

Writing integration tests

The test dependencies include Neo4j Harness and JUnit. These can be used to write integration tests
for procedures.

First, we decide what the procedure should do, then we write a test that proves that it does it right.
Finally we write a procedure that passes the test.

Below is a template for testing a procedure that accesses Neo4jÕs full-text indexes from Cypher.

5

https://maven.apache.org/plugins/maven-shade-plugin/

Writing tests for procedures

package example;

import org.junit.Rule ;
import org.junit.Test ;
import org.neo4j.driver.v1.* ;
import org.neo4j.graphdb.factory.GraphDatabaseSettings ;
import org.neo4j.harness.junit.Neo4jRule ;

import static org. hamcrest. core. IsEqual . equalTo;
import static org. junit . Assert . assertThat ;
import static org. neo4j. driver . v1. Values. parameters;

public class ManualFullTextIndexTest
{
Ê // This rule starts a Neo4j instance for us
Ê @Rule
Ê public Neo4jRule neo4j = new Neo4jRule()

Ê // This is the Procedure we want to test
Ê . withProcedure(FullTextIndex . class);

Ê @Test
Ê public void shouldAllowIndexingAndFindingANode() throws Throwable
Ê {
Ê // In a try-block, to make sure we close the driver after the test
Ê try (Driver driver = GraphDatabase. driver (neo4j. boltURI () , Config . build (). withEncryptionLevel (
Config . EncryptionLevel . NONE). toConfig ()))
Ê {

Ê // Given I've started Neo4j with the FullTextIndex procedure class
Ê // which my 'neo4j' rule above does.
Ê Session session = driver . session();

Ê // And given I have a node in the database
Ê long nodeId = session. run("CREATE (p:User {name:'Brookreson'}) RETURN id(p)")
Ê . single ()
Ê . get (0). asLong();

Ê // When I use the index procedure to index a node
Ê session. run("CALL example.index({id}, ['name'])" , parameters("id" , nodeId));

Ê // Then I can search for that node with lucene query syntax
Ê StatementResult result = session. run("CALL example.search('User', 'name:Brook*')");
Ê assertThat (result . single (). get ("nodeId"). asLong(), equalTo(nodeId));
Ê }
Ê }
}

Writing a procedure

With the test in place, we write a procedure procedure that fulfils the expectations of the test. The full
example is available in the Neo4j Procedure Template (https://github.com/neo4j-examples/neo4j-procedure-
template) repository.

Particular things to note:

¥ All procedures are annotated @Procedure. Procedures that write to the database are additionally
annotated @PerformsWrites.

¥ The context of the procedure, which is the same as each resource that the procedure wants to use,
is annotated @Context.

¥ The input and output .

For more details, see the API documentation for procedures
(javadocs/index.html?org/neo4j/procedure/Procedure.html).

The correct way to signal an error from within a procedure is to throw a
RuntimeException.

6

https://github.com/neo4j-examples/neo4j-procedure-template
javadocs/index.html?org/neo4j/procedure/Procedure.html

package example;

import java.util.List ;
import java.util.Map ;
import java.util.Set ;
import java.util.stream.Stream ;

import org.neo4j.graphdb.GraphDatabaseService ;
import org.neo4j.graphdb.Label ;
import org.neo4j.graphdb.Node ;
import org.neo4j.graphdb.index.Index ;
import org.neo4j.graphdb.index.IndexManager ;
import org.neo4j.logging.Log ;
import org.neo4j.procedure.Context ;
import org.neo4j.procedure.Name ;
import org.neo4j.procedure.PerformsWrites ;
import org.neo4j.procedure.Procedure ;

import static org. neo4j. helpers . collection . MapUtil . stringMap;

/**
Ê* This is an example showing how you could expose Neo4j's full text indexes as
Ê* two procedures - one for updating indexes, and one for querying by label and
Ê* the lucene query language.
Ê*/
public class FullTextIndex
{
Ê // Only static fields and @Context-annotated fields are allowed in
Ê // Procedure classes. This static field is the configuration we use
Ê // to create full-text indexes.
Ê private static final Map<String , String > FULL_TEXT =
Ê stringMap(IndexManager. PROVIDER, "lucene" , "type" , "fulltext");

Ê // This field declares that we need a GraphDatabaseService
Ê // as context when any procedure in this class is invoked
Ê @Context
Ê public GraphDatabaseService db;

Ê // This gives us a log instance that outputs messages to the
Ê // standard log, `neo4j.log`
Ê @Context
Ê public Log log ;

Ê /**
Ê * This declares the first of two procedures in this class - a
Ê * procedure that performs queries in a manual index.
Ê *
Ê * It returns a Stream of Records, where records are
Ê * specified per procedure. This particular procedure returns
Ê * a stream of {@link SearchHit} records.
Ê *
Ê * The arguments to this procedure are annotated with the
Ê * {@link Name} annotation and define the position, name
Ê * and type of arguments required to invoke this procedure.
Ê * There is a limited set of types you can use for arguments,
Ê * these are as follows:
Ê *
Ê *
Ê * {@link String}
Ê * {@link Long} or {@code long}
Ê * {@link Double} or {@code double}
Ê * {@link Number}
Ê * {@link Boolean} or {@code boolean}
Ê * {@link java.util.Map} with key {@link String} and value {@link Object}
Ê * {@link java.util.List} of elements of any valid argument type, including {@link
java.util.List}
Ê * {@link Object}, meaning any of the valid argument types
Ê *
Ê *
Ê * @param label the label name to query by
Ê * @param query the lucene query, for instance `name:Brook*` to
Ê * search by property `name` and find any value starting
Ê * with `Brook`. Please refer to the Lucene Query Parser
Ê * documentation for full available syntax.
Ê * @return the nodes found by the query
Ê */
Ê @Procedure("example.search")
Ê @PerformsWrites

7

Ê public Stream<SearchHit> search(@Name("label") String label ,
Ê @Name("query") String query)
Ê {
Ê String index = indexName(label);

Ê // Avoid creating the index, if it's not there we won't be
Ê // finding anything anyway!
Ê if (! db. index(). existsForNodes(index))
Ê {
Ê // Just to show how you'd do logging
Ê log . debug("Skipping index query since index does not exist: `%s`" , index);
Ê return Stream. empty();
Ê }

Ê // If there is an index, do a lookup and convert the result
Ê // to our output record.
Ê return db. index()
Ê . forNodes(index)
Ê . query(query)
Ê . stream()
Ê . map(SearchHit: : new);
Ê }

Ê /**
Ê * This is the second procedure defined in this class, it is used to update the
Ê * index with nodes that should be queryable. You can send the same node multiple
Ê * times, if it already exists in the index the index will be updated to match
Ê * the current state of the node.
Ê *
Ê * This procedure works largely the same as {@link #search(String, String)},
Ê * with two notable differences. One, it is annotated with {@link PerformsWrites},
Ê * which is <i>required</i> if you want to perform updates to the graph in your
Ê * procedure.
Ê *
Ê * Two, it returns {@code void} rather than a stream. This is simply a short-hand
Ê * for saying our procedure always returns an empty stream of empty records.
Ê *
Ê * @param nodeId the id of the node to index
Ê * @param propKeys a list of property keys to index, only the ones the node
Ê * actually contains will be added
Ê */
Ê @Procedure("example.index")
Ê @PerformsWrites
Ê public void index(@Name("nodeId") long nodeId,
Ê @Name("properties") List <String > propKeys)
Ê {
Ê Node node = db. getNodeById(nodeId);

Ê // Load all properties for the node once and in bulk,
Ê // the resulting set will only contain those properties in `propKeys`
Ê // that the node actually contains.
Ê Set<Map. Entry <String , Object>> properties =
Ê node. getProperties (propKeys. toArray (new String [0])). entrySet ();

Ê // Index every label (this is just as an example, we could filter which labels to index)
Ê for (Label label : node. getLabels ())
Ê {
Ê Index<Node> index = db. index(). forNodes(indexName(label . name()), FULL_TEXT);

Ê // In case the node is indexed before, remove all occurrences of it so
Ê // we don't get old or duplicated data
Ê index. remove(node);

Ê // And then index all the properties
Ê for (Map. Entry <String , Object> property : properties)
Ê {
Ê index. add(node, property . getKey(), property . getValue());
Ê }
Ê }
Ê }

Ê /**
Ê * This is the output record for our search procedure. All procedures
Ê * that return results return them as a Stream of Records, where the
Ê * records are defined like this one - customized to fit what the procedure
Ê * is returning.
Ê *
Ê * These classes can only have public non-final fields, and the fields must
Ê * be one of the following types:

8

Ê *
Ê *
Ê * {@link String}
Ê * {@link Long} or {@code long}
Ê * {@link Double} or {@code double}
Ê * {@link Number}
Ê * {@link Boolean} or {@code boolean}
Ê * {@link org.neo4j.graphdb.Node}
Ê * {@link org.neo4j.graphdb.Relationship}
Ê * {@link org.neo4j.graphdb.Path}
Ê * {@link java.util.Map} with key {@link String} and value {@link Object}
Ê * {@link java.util.List} of elements of any valid field type, including {@link
java.util.List}
Ê * {@link Object}, meaning any of the valid field types
Ê *
Ê */
Ê public static class SearchHit
Ê {
Ê // This records contain a single field named 'nodeId'
Ê public long nodeId;

Ê public SearchHit (Node node)
Ê {
Ê this . nodeId = node. getId ();
Ê }
Ê }

Ê private String indexName(String label)
Ê {
Ê return "label-" + label ;
Ê }
}

1.2. Unmanaged Server Extensions
Sometimes youÕll want finer grained control over your applicationÕs interactions with Neo4j than
cypher provides. For these situations you can use the unmanaged extension API.

$
This is a sharp tool, allowing users to deploy arbitrary JAX-RS
(http://en.wikipedia.org/wiki/JAX-RS) classes to the server so be careful when using this. In
particular itÕs easy to consume lots of heap space on the server and degrade
performance. If in doubt, please ask for help via one of the community channels.

1.2.1. Introduction to unmanaged extensions
The first step when writing an unmanaged extension is to create a project which includes
dependencies to the JAX-RS and Neo4j core jars. In Maven this would be achieved by adding the
following lines to the pom file:

<dependency>
Ê <groupId>javax.ws.rs </groupId>
Ê <artifactId> javax.ws.rs-api </artifactId>
Ê <version>2.0</version>
Ê <scope>provided </scope>
</dependency>

1 <dependency>
2 <groupId>org.neo4j </groupId>
3 <artifactId> neo4j</artifactId>
4 <version> {neo4j-version} </version>
5 <scope>provided </scope>
6 </dependency>

Now weÕre ready to write our extension.

9

http://en.wikipedia.org/wiki/JAX-RS

In our code weÕll interact with the database using GraphDatabaseService which we can get access to by
using the @Context annotation. The following example serves as a template which you can base your
extension on:

Unmanaged extension example

@Path("/helloworld")
public class HelloWorldResource
{
Ê private final GraphDatabaseService database;

Ê public HelloWorldResource(@Context GraphDatabaseService database)
Ê {
Ê this . database = database;
Ê }

Ê @GET
Ê @Produces(MediaType. TEXT_PLAIN)
Ê @Path("/{nodeId}")
Ê public Response hello (@PathParam("nodeId") long nodeId)
Ê {
Ê // Do stuff with the database
Ê return Response. status (Status . OK). entity (UTF8. encode("Hello World, nodeId=" + nodeId)).
build ();
Ê }
}

The full source code is found here: HelloWorldResource.java
(https://github.com/neo4j/neo4j/blob/3.0/manual/server-
examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java)

Having built your code, the resulting jar file (and any custom dependencies) should be placed in the
$NEO4J_SERVER_HOME/plugins directory. We also need to tell Neo4j where to look for the extension by
adding some configuration in neo4j.conf:

#Comma separated list of JAXRS packages containing JAXRS Resource, one package name for each mountpoint.
dbms.unmanaged_extension_classes=org.neo4j.examples.server.unmanaged=/examples/unmanaged

Our hello method will now respond to GET requests at the URI:
http://{neo4j_server}:{neo4j_port}/examples/unmanaged/helloworld/{nodeId} . e.g.

curl http://localhost:7474/examples/unmanaged/helloworld/123

which results in

Hello World, nodeId=123

1.2.2. Streaming JSON responses
When writing unmanaged extensions we have greater control over the amount of memory that our
Neo4j queries use. If we keep too much state around it can lead to more frequent full Garbage
Collection and subsequent unresponsiveness by the Neo4j server.

A common way that state can creep in is the creation of JSON objects to represent the result of a
query which we then send back to our application. Neo4jÕs Transactional Cypher HTTP endpoint
streams responses back to the client and we should follow in its footsteps.

For example, the following unmanaged extension streams an array of a personÕs colleagues:

10

https://github.com/neo4j/neo4j/blob/3.0/manual/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/HelloWorldResource.java

Unmanaged extension streaming example

@Path("/colleagues")
public class ColleaguesResource
{
Ê private GraphDatabaseService graphDb;
Ê private final ObjectMapper objectMapper;

Ê private static final RelationshipType ACTED_IN = RelationshipType . withName("ACTED_IN");
Ê private static final Label PERSON = Label. label ("Person");

Ê public ColleaguesResource(@Context GraphDatabaseService graphDb)
Ê {
Ê this . graphDb = graphDb;
Ê this . objectMapper = new ObjectMapper();
Ê }

Ê @GET
Ê @Path("/{personName}")
Ê public Response findColleagues (final @PathParam("personName") String personName)
Ê {
Ê StreamingOutput stream = new StreamingOutput()
Ê {
Ê @Override
Ê public void write (OutputStream os) throws IOException, WebApplicationException
Ê {
Ê JsonGenerator jg = objectMapper. getJsonFactory (). createJsonGenerator(os, JsonEncoding
. UTF8);
Ê jg . writeStartObject ();
Ê jg . writeFieldName("colleagues");
Ê jg . writeStartArray ();

Ê try (Transaction tx = graphDb. beginTx();
Ê ResourceIterator <Node> persons = graphDb. findNodes(PERSON, "name", personName))
Ê {
Ê while (persons. hasNext())
Ê {
Ê Node person = persons. next ();
Ê for (Relationship actedIn : person. getRelationships (ACTED_IN, OUTGOING))
Ê {
Ê Node endNode = actedIn . getEndNode();
Ê for (Relationship colleagueActedIn : endNode. getRelationships (ACTED_IN,
INCOMING))
Ê {
Ê Node colleague = colleagueActedIn . getStartNode();
Ê if (! colleague . equals(person))
Ê {
Ê jg . writeString (colleague . getProperty ("name"). toString ());
Ê }
Ê }
Ê }
Ê }
Ê tx . success();
Ê }

Ê jg . writeEndArray ();
Ê jg . writeEndObject ();
Ê jg . flush ();
Ê jg . close ();
Ê }
Ê };

Ê return Response. ok(). entity (stream). type(MediaType. APPLICATION_JSON). build ();
Ê }
}

The full source code is found here: ColleaguesResource.java
(https://github.com/neo4j/neo4j/blob/3.0/manual/server-
examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesResource.java)

As well as depending on JAX-RS API this example also uses Jackson!Ñ!a Java JSON library. YouÕll need to
add the following dependency to your Maven POM file (or equivalent):

11

https://github.com/neo4j/neo4j/blob/3.0/manual/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesResource.java

<dependency>
Ê <groupId>org.codehaus.jackson </groupId>
Ê <artifactId> jackson-mapper-asl </artifactId>
Ê <version>1.9.7 </version>
</dependency>

Our findColleagues method will now respond to GET requests at the URI:
http://{neo4j_server}:{neo4j_port}/examples/unmanaged/colleagues/{personName} . For example:

curl http://localhost:7474/examples/unmanaged/colleagues/Keanu%20Reeves

which results in

{"colleagues":["Hugo Weaving","Carrie-Anne Moss","Laurence Fishburne"]}

1.2.3. Using Cypher in an unmanaged extension
You can execute Cypher queries by using the GraphDatabaseService that is injected into the extension.
For example, the following unmanaged extension retrieves a personÕs colleagues using Cypher:

12

Unmanaged extension Cypher execution example

@Path("/colleagues-cypher-execution")
public class ColleaguesCypherExecutionResource
{
Ê private final ObjectMapper objectMapper;
Ê private GraphDatabaseService graphDb;

Ê public ColleaguesCypherExecutionResource(@Context GraphDatabaseService graphDb)
Ê {
Ê this . graphDb = graphDb;
Ê this . objectMapper = new ObjectMapper();
Ê }

Ê @GET
Ê @Path("/{personName}")
Ê public Response findColleagues (final @PathParam("personName") String personName)
Ê {
Ê final Map<String , Object> params = MapUtil . map("personName", personName);

Ê StreamingOutput stream = new StreamingOutput()
Ê {
Ê @Override
Ê public void write (OutputStream os) throws IOException, WebApplicationException
Ê {
Ê JsonGenerator jg = objectMapper. getJsonFactory (). createJsonGenerator(os, JsonEncoding
. UTF8);
Ê jg . writeStartObject ();
Ê jg . writeFieldName("colleagues");
Ê jg . writeStartArray ();

Ê try (Transaction tx = graphDb. beginTx();
Ê Result result = graphDb. execute(colleaguesQuery(), params))
Ê {
Ê while (result . hasNext())
Ê {
Ê Map<String , Object> row = result . next ();
Ê jg . writeString (((Node) row. get("colleague")). getProperty ("name"). toString ()
);
Ê }
Ê tx . success();
Ê }

Ê jg . writeEndArray ();
Ê jg . writeEndObject ();
Ê jg . flush ();
Ê jg . close ();
Ê }
Ê };

Ê return Response. ok(). entity (stream). type(MediaType. APPLICATION_JSON). build ();
Ê }

Ê private String colleaguesQuery()
Ê {
Ê return "MATCH (p:Person {name: {personName} })-[:ACTED_IN]->()<-[:ACTED_IN]-(colleague) RETURN
colleague" ;
Ê }
}

The full source code is found here: ColleaguesCypherExecutionResource.java
(https://github.com/neo4j/neo4j/blob/3.0/manual/server-
examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesCypherExecutionResource.java)

Our findColleagues method will now respond to GET requests at the URI:
http://{neo4j_server}:{neo4j_port}/examples/unmanaged/colleagues-cypher-execution/{personName} .
e.g.

curl http://localhost:7474/examples/unmanaged/colleagues-cypher-execution/Keanu%20Reeves

which results in

13

https://github.com/neo4j/neo4j/blob/3.0/manual/server-examples/src/main/java/org/neo4j/examples/server/unmanaged/ColleaguesCypherExecutionResource.java

{"colleagues":["Hugo Weaving","Carrie-Anne Moss","Laurence Fishburne"]}

1.2.4. Testing your extension
Neo4j provides tools to help you write integration tests for your extensions. You can access this toolkit
by adding the following test dependency to your project:

1 <dependency>
2 <groupId>org.neo4j.test </groupId>
3 <artifactId> neo4j-harness </artifactId>
4 <version>3.0</version>
5 <scope>test </scope>
6 </dependency>

The test toolkit provides a mechanism to start a Neo4j instance with custom configuration and with
extensions of your choice. It also provides mechanisms to specify data fixtures to include when
starting Neo4j.

14

Usage example

@Path("")
public static class MyUnmanagedExtension
{
Ê @GET
Ê public Response myEndpoint()
Ê {
Ê return Response. ok(). build ();
Ê }
}

@Test
public void testMyExtension () throws Exception
{
Ê // Given
Ê try (ServerControls server = getServerBuilder ()
Ê . withExtension ("/myExtension" , MyUnmanagedExtension. class)
Ê . newServer())
Ê {
Ê // When
Ê HTTP. Response response = HTTP. GET(
Ê HTTP. GET(server . httpURI(). resolve ("myExtension"). toString ()). location ());

Ê // Then
Ê assertEquals (200, response. status ());
Ê }
}

@Test
public void testMyExtensionWithFunctionFixture () throws Exception
{
Ê // Given
Ê try (ServerControls server = getServerBuilder ()
Ê . withExtension ("/myExtension" , MyUnmanagedExtension. class)
Ê . withFixture (new Function <GraphDatabaseService, Void>()
Ê {
Ê @Override
Ê public Void apply(GraphDatabaseService graphDatabaseService) throws RuntimeException
Ê {
Ê try (Transaction tx = graphDatabaseService. beginTx())
Ê {
Ê graphDatabaseService. createNode(Label. label ("User"));
Ê tx . success();
Ê }
Ê return null ;
Ê }
Ê })
Ê . newServer())
Ê {
Ê // When
Ê Result result = server . graph(). execute("MATCH (n:User) return n");

Ê // Then
Ê assertEquals (1, count(result));
Ê }
}

The full source code of the example is found here: ExtensionTestingDocTest.java
(https://github.com/neo4j/neo4j/blob/3.0/manual/neo4j-harness-
test/src/test/java/org/neo4j/harness/doc/ExtensionTestingDocTest.java)

Note the use of server.httpURI().resolve("myExtension") to ensure that the correct base URI is
used.

If you are using the JUnit test framework, there is a JUnit rule available as well.

15

https://github.com/neo4j/neo4j/blob/3.0/manual/neo4j-harness-test/src/test/java/org/neo4j/harness/doc/ExtensionTestingDocTest.java

JUnit example

@Rule
public Neo4jRule neo4j = new Neo4jRule()
Ê . withFixture ("CREATE (admin:Admin)")
Ê . withConfig (ServerSettings . certificates_directory . name(),
Ê getRelativePath (getSharedTestTemporaryFolder(), ServerSettings . certificates_directory))
Ê . withFixture (new Function <GraphDatabaseService, Void>()
Ê {
Ê @Override
Ê public Void apply(GraphDatabaseService graphDatabaseService) throws RuntimeException
Ê {
Ê try (Transaction tx = graphDatabaseService. beginTx())
Ê {
Ê graphDatabaseService. createNode(Label. label ("Admin"));
Ê tx . success();
Ê }
Ê return null ;
Ê }
Ê });

@Test
public void shouldWorkWithServer() throws Exception
{
Ê // Given
Ê URI serverURI = neo4j. httpURI();

Ê // When I access the server
Ê HTTP. Response response = HTTP. GET(serverURI. toString ());

Ê // Then it should reply
Ê assertEquals (200, response. status ());

Ê // and we have access to underlying GraphDatabaseService
Ê try (Transaction tx = neo4j. getGraphDatabaseService(). beginTx()) {
Ê assertEquals (2, count(neo4j. getGraphDatabaseService(). findNodes(Label. label ("Admin"))));
Ê tx . success();
Ê }
}

1.3. Installing Procedures and Extensions in Neo4j Desktop
Extensions can be be deployed also when using Neo4j Desktop. Neo4j Desktop will add all jars in
%ProgramFiles%\Neo4j Community\plugins to the classpath, but please note that nested directories for
plugins are not supported.

Otherwise extensions are subject to the same rules as usual. Please note when configuring server
extensions that neo4j.conf for Neo4j Desktop lives in %APPDATA%\Neo4j Community.

16

Chapter 2. Using Neo4j embedded in Java
applications
ItÕs easy to use Neo4j embedded in Java applications. In this chapter you will find everything
needed!Ñ!from setting up the environment to doing something useful with your data.

!

When running your own code and Neo4j in the same JVM, there are a few things
you should keep in mind:

¥ DonÕt create or retain more objects than you strictly need to. Large caches in
particular tend to promote more objects to the old generation, thus increasing
the need for expensive full garbage collections.

¥ DonÕt use internal Neo4j APIs. They are internal to Neo4j and subject to change
without notice, which may break or change the behavior of your code.

¥ DonÕt enable the -XX:+TrustFinalNonStaticFields JVM flag when running in
embedded mode.

2.1. Include Neo4j in your project
After selecting the appropriate edition for your platform, embed Neo4j in your Java application by
including the Neo4j library jars in your build. The following sections will show how to do this by either
altering the build path directly or by using dependency management.

2.1.1. Add Neo4j to the build path
Get the Neo4j libraries from one of these sources:

¥ Extract a Neo4j zip/tarball (http://neo4j.com/download/) , and use the jar files found in the lib/ directory.

¥ Use the jar files available from Maven Central Repository
(http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22)

Add the jar files to your project:

JDK tools
Append to -classpath

Eclipse
¥ Right-click on the project and then go Build Path ! Configure Build Path. In the dialog, choose Add

External JARs, browse to the Neo4j lib/ directory and select all of the jar files.

¥ Another option is to use User Libraries
(http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-
preferences-user-libraries.htm).

IntelliJ IDEA
See Libraries, Global Libraries, and the Configure Library dialog
(http://www.jetbrains.com/idea/webhelp/configuring-project-and-global-libraries.html)

NetBeans
¥ Right-click on the Libraries node of the project, choose Add JAR/Folder, browse to the Neo4j lib/

directory and select all of the jar files.

¥ You can also handle libraries from the project node, see Managing a ProjectÕs Classpath
(http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath) .

17

http://neo4j.com/download/
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22
http://help.eclipse.org/indigo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/preferences/java/buildpath/ref-preferences-user-libraries.htm
http://www.jetbrains.com/idea/webhelp/configuring-project-and-global-libraries.html
http://netbeans.org/kb/docs/java/project-setup.html#projects-classpath

2.1.2. Editions
The following table outlines the available editions and their names for use with dependency
management tools.

" Follow the links in the table for details on dependency configuration with Apache
Maven, Apache Buildr, Apache Ivy, Groovy Grape, Grails, Scala SBT!

Table 1. Neo4j editions

Edition Dependency Description License

Community org.neo4j:neo4j
(http://search.maven.org/#search
%7Cgav%7C1%7Cg%3A%22org.n
eo4j%22%20AND%20a%3A%22ne
o4j%22)

a high performance, fully
ACID transactional graph
database

GPLv3

Enterprise org.neo4j:neo4j-enterprise
(http://search.maven.org/#search
%7Cgav%7C1%7Cg%3A%22org.n
eo4j%22%20AND%20a%3A%22ne
o4j-enterprise%22)

adding advanced
monitoring, online backup
and High Availability
clustering

AGPLv3

The listed dependencies do not contain the implementation, but pulls it in
transitively.

For more information regarding licensing, see the Licensing Guide (http://www.neo4j.org/learn/licensing) .

Javadocs can be downloaded packaged in jar files from Maven Central or read at javadocs (javadocs/).

2.1.3. Add Neo4j as a dependency
You can either go with the top-level artifact from the table above or include the individual components
directly. The examples included here use the top-level artifact approach.

Maven

Add the dependency to your project along the lines of the snippet below. This is usually done in the
pom.xml file found in the root directory of the project.

Maven dependency

Ê1 <project>
Ê2 ...
Ê3 <dependencies>
Ê4 <dependency>
Ê5 <groupId>org.neo4j </groupId>
Ê6 <artifactId> neo4j</artifactId>
Ê7 <version>3.0</version>
Ê8 </dependency>
Ê9 ...
10 </dependencies>
11 ...
12 </project>

Where the artifactId is found in the editions table.

Eclipse and Maven

For development in Eclipse (http://www.eclipse.org), it is recommended to install the m2e plugin
(http://www.eclipse.org/m2e/) and let Maven manage the project build classpath instead, see above. This
also adds the possibility to build your project both via the command line with Maven and have a

18

http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://www.neo4j.org/learn/licensing
javadocs/
http://www.eclipse.org
http://www.eclipse.org/m2e/

working Eclipse setup for development.

Ivy

Make sure to resolve dependencies from Maven Central, for example using this configuration in your
ivysettings.xml file:

<ivysettings>
Ê <settings defaultResolver= "main" />
Ê <resolvers>
Ê <chain name="main">
Ê <filesystem name="local" >
Ê <artifact pattern= "${ivy.settings.dir}/repository/[artifact]-[revision].[ext]" />
Ê </filesystem>
Ê <ibiblio name="maven_central" root= "http://repo1.maven.org/maven2/" m2compatible="true" />
Ê </chain>
Ê </resolvers>
</ivysettings>

With that in place you can add Neo4j to the mix by having something along these lines to your 'ivy.xml'
file:

1 ..
2 <dependencies>
3 ..
4 <dependency org="org.neo4j" name="neo4j" rev="3.0" />
5 ..
6 </dependencies>
7 ..

Where the name is found in the editions table above

Gradle

The example below shows an example gradle build script for including the Neo4j libraries.

1 def neo4jVersion = "3.0"
2 apply plugin: 'java'
3 repositories {
4 mavenCentral()
5 }
6 dependencies {
7 compile "org.neo4j:neo4j:${neo4jVersion}"
8 }

Where the coordinates (org.neo4j:neo4j in the example) are found in the editions table above.

2.1.4. Starting and stopping
To create a new database or open an existing one you instantiate a GraphDatabaseService
(javadocs/org/neo4j/graphdb/GraphDatabaseService.html) .

graphDb = new GraphDatabaseFactory(). newEmbeddedDatabase(DB_PATH);
registerShutdownHook(graphDb);

The GraphDatabaseService instance can be shared among multiple threads. Note
however that you canÕt create multiple instances pointing to the same database.

To stop the database, call the shutdown() method:

19

javadocs/org/neo4j/graphdb/GraphDatabaseService.html

graphDb. shutdown();

To make sure Neo4j is shut down properly you can add a shutdown hook:

private static void registerShutdownHook(final GraphDatabaseService graphDb)
{
Ê // Registers a shutdown hook for the Neo4j instance so that it
Ê // shuts down nicely when the VM exits (even if you "Ctrl-C" the
Ê // running application).
Ê Runtime. getRuntime(). addShutdownHook(new Thread()
Ê {
Ê @Override
Ê public void run()
Ê {
Ê graphDb. shutdown();
Ê }
Ê });
}

Starting an embedded database with configuration settings

To start Neo4j with configuration settings, a Neo4j properties file can be loaded like this:

GraphDatabaseService graphDb = new GraphDatabaseFactory()
Ê . newEmbeddedDatabaseBuilder(testDirectory . graphDbDir())
Ê . loadPropertiesFromFile (pathToConfig + "neo4j.conf")
Ê . newGraphDatabase();

Configuration settings can also be applied programmatically, like so:

GraphDatabaseService graphDb = new GraphDatabaseFactory()
Ê . newEmbeddedDatabaseBuilder(testDirectory . graphDbDir())
Ê . setConfig (GraphDatabaseSettings. pagecache_memory, "512M")
Ê . setConfig (GraphDatabaseSettings. string_block_size , "60")
Ê . setConfig (GraphDatabaseSettings. array_block_size , "300")
Ê . newGraphDatabase();

Starting an embedded read-only instance

If you want a read-only view of the database, create an instance this way:

graphDb = new GraphDatabaseFactory(). newEmbeddedDatabaseBuilder(dir)
Ê . setConfig (GraphDatabaseSettings. read_only, "true")
Ê . newGraphDatabase();

Obviously the database has to already exist in this case.

Concurrent access to the same database files by multiple (read-only or write)
instances is not supported.

2.2. Hello World
Learn how to create and access nodes and relationships. For information on project setup, see Include
Neo4j in your project .

Remember that a Neo4j graph consists of:

¥ Nodes that are connected by

20

¥ Relationships, with

¥ Properties on both nodes and relationships.

All relationships have a type. For example, if the graph represents a social network, a relationship type
could be KNOWS. If a relationship of the type KNOWS connects two nodes, that probably represents two
people that know each other. A lot of the semantics (that is the meaning) of a graph is encoded in the
relationship types of the application. And although relationships are directed they are equally well
traversed regardless of which direction they are traversed.

"
The source code of this example is found here: EmbeddedNeo4j.java
(https://github.com/neo4j/neo4j/blob/3.0/manual/embedded-
examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java)

2.2.1. Prepare the database
Relationship types can be created by using an enum. In this example we only need a single relationship
type. This is how to define it:

private static enum RelTypes implements RelationshipType
{
Ê KNOWS
}

We also prepare some variables to use:

GraphDatabaseService graphDb;
Node firstNode ;
Node secondNode;
Relationship relationship ;

The next step is to start the database server. Note that if the directory given for the database doesnÕt
already exist, it will be created.

graphDb = new GraphDatabaseFactory(). newEmbeddedDatabase(DB_PATH);
registerShutdownHook(graphDb);

Note that starting a database server is an expensive operation, so donÕt start up a new instance every
time you need to interact with the database! The instance can be shared by multiple threads.
Transactions are thread confined.

As seen, we register a shutdown hook that will make sure the database shuts down when the JVM
exits. Now itÕs time to interact with the database.

2.2.2. Wrap operations in a transaction
All operations have to be performed in a transaction. This is a conscious design decision, since we
believe transaction demarcation to be an important part of working with a real enterprise database.
Now, transaction handling in Neo4j is very easy:

try (Transaction tx = graphDb. beginTx())
{
Ê // Database operations go here
Ê tx . success();
}

For more information on transactions, see Transaction Management and Java API for Transaction

21

https://github.com/neo4j/neo4j/blob/3.0/manual/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4j.java
javadocs/org/neo4j/graphdb/Transaction.html

(javadocs/org/neo4j/graphdb/Transaction.html) .

For brevity, we do not spell out wrapping of operations in a transaction throughout
the manual.

2.2.3. Create a small graph
Now, letÕs create a few nodes. The API is very intuitive. Feel free to have a look at the Neo4j Javadocs
(javadocs/). TheyÕre included in the distribution, as well. HereÕs how to create a small graph consisting of
two nodes, connected with one relationship and some properties:

firstNode = graphDb. createNode();
firstNode . setProperty ("message", "Hello, ");
secondNode = graphDb. createNode();
secondNode. setProperty ("message", "World!");

relationship = firstNode . createRelationshipTo (secondNode, RelTypes. KNOWS);
relationship . setProperty ("message", "brave Neo4j ");

We now have a graph that looks like this:

message = 'Hello, '

message = 'World!'

KNOWS
message = 'brave Neo4j '

Figure 1. Hello World Graph

2.2.4. Print the result
After weÕve created our graph, letÕs read from it and print the result.

System. out . print (firstNode . getProperty ("message"));
System. out . print (relationship . getProperty ("message"));
System. out . print (secondNode. getProperty ("message"));

Which will output:

Hello, brave Neo4j World!

2.2.5. Remove the data
In this case weÕll remove the data before committing:

// let's remove the data
firstNode . getSingleRelationship (RelTypes. KNOWS, Direction . OUTGOING). delete ();
firstNode . delete ();
secondNode. delete ();

Note that deleting a node which still has relationships when the transaction commits will fail. This is to
make sure relationships always have a start node and an end node.

22

javadocs/

2.2.6. Shut down the database server
Finally, shut down the database server when the application finishes:

graphDb. shutdown();

2.3. Property values
Both nodes and relationships can have properties.

Properties are named values where the name is a string. Property values can be either a primitive or
an array of one primitive type. For example String , int and int[] values are valid for properties.

NULL is not a valid property value.
NULLs can instead be modeled by the absence of a key.

Table 2. Property value types

Type Description Value range

boolean true/false

byte 8-bit integer -128 to 127, inclusive

short 16-bit integer -32768 to 32767, inclusive

int 32-bit integer -2147483648 to 2147483647, inclusive

long 64-bit integer -9223372036854775808 to
9223372036854775807, inclusive

float 32-bit IEEE 754 floating-point number

double 64-bit IEEE 754 floating-point number

char 16-bit unsigned integers representing Unicode
characters

u0000 to uffff (0 to 65535)

String sequence of Unicode characters

For further details on float/double values, see Java Language Specification
(http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2.3) .

2.4. User database with indexes
You have a user database, and want to retrieve users by name using indexes.

"
The source code used in this example is found here:
EmbeddedNeo4jWithNewIndexing.java
(https://github.com/neo4j/neo4j/blob/3.0/manual/embedded-
examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithNewIndexing.java)

To begin with, we start the database server:

GraphDatabaseService graphDb = new GraphDatabaseFactory(). newEmbeddedDatabase(DB_PATH);

Then we have to configure the database to index users by name. This only needs to be done once.

23

http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.2.3
https://github.com/neo4j/neo4j/blob/3.0/manual/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithNewIndexing.java

Schema changes and data changes are not allowed in the same transaction. Each
transaction must either change the schema or the data, but not both.

IndexDefinition indexDefinition ;
try (Transaction tx = graphDb. beginTx())
{
Ê Schema schema = graphDb. schema();
Ê indexDefinition = schema. indexFor(Label. label ("User"))
Ê . on("username")
Ê . create ();
Ê tx . success();
}

Indexes are populated asynchronously when they are first created. It is possible to use the core API to
wait for index population to complete:

try (Transaction tx = graphDb. beginTx())
{
Ê Schema schema = graphDb. schema();
Ê schema. awaitIndexOnline (indexDefinition , 10, TimeUnit. SECONDS);
}

It is also possible to query the progress of the index population:

try (Transaction tx = graphDb. beginTx())
{
Ê Schema schema = graphDb. schema();
Ê System. out . println (String . format ("Percent complete: %1.0f%%",
Ê schema. getIndexPopulationProgress (indexDefinition). getCompletedPercentage()));
}

ItÕs time to add the users:

try (Transaction tx = graphDb. beginTx())
{
Ê Label label = Label. label ("User");

Ê // Create some users
Ê for (int id = 0; id < 100; id ++)
Ê {
Ê Node userNode = graphDb. createNode(label);
Ê userNode. setProperty ("username", "user" + id + "@neo4j.org");
Ê }
Ê System. out . println ("Users created");
Ê tx . success();
}

Please read Managing resources when using long running transactions on how to
properly close ResourceIterators returned from index lookups.

And hereÕs how to find a user by id:

24

Label label = Label. label ("User");
int idToFind = 45;
String nameToFind = "user" + idToFind + "@neo4j.org" ;
try (Transaction tx = graphDb. beginTx())
{
Ê try (ResourceIterator <Node> users =
Ê graphDb. findNodes(label , "username", nameToFind))
Ê {
Ê ArrayList <Node> userNodes = new ArrayList <>();
Ê while (users. hasNext())
Ê {
Ê userNodes. add(users. next ());
Ê }

Ê for (Node node : userNodes)
Ê {
Ê System. out . println (
Ê "The username of user " + idToFind + " is " + node. getProperty ("username"));
Ê }
Ê }
}

When updating the name of a user, the index is updated as well:

try (Transaction tx = graphDb. beginTx())
{
Ê Label label = Label. label ("User");
Ê int idToFind = 45;
Ê String nameToFind = "user" + idToFind + "@neo4j.org" ;

Ê for (Node node : loop(graphDb. findNodes(label , "username", nameToFind)))
Ê {
Ê node. setProperty ("username", "user" + (idToFind + 1) + "@neo4j.org");
Ê }
Ê tx . success();
}

When deleting a user, it is automatically removed from the index:

try (Transaction tx = graphDb. beginTx())
{
Ê Label label = Label. label ("User");
Ê int idToFind = 46;
Ê String nameToFind = "user" + idToFind + "@neo4j.org" ;

Ê for (Node node : loop(graphDb. findNodes(label , "username", nameToFind)))
Ê {
Ê node. delete ();
Ê }
Ê tx . success();
}

In case we change our data model, we can drop the index as well:

try (Transaction tx = graphDb. beginTx())
{
Ê Label label = Label. label ("User");
Ê for (IndexDefinition indexDefinition : graphDb. schema()
Ê . getIndexes(label))
Ê {
Ê // There is only one index
Ê indexDefinition . drop();
Ê }

Ê tx . success();
}

25

2.5. User database with manual index
Unless you have specific reasons to use the manual indexing, see User database with indexes instead.

Please read Managing resources when using long running transactions on how to
properly close ResourceIterators returned from index lookups.

You have a user database, and want to retrieve users by name using the manual indexing system.

"
The source code used in this example is found here:
EmbeddedNeo4jWithIndexing.java
(https://github.com/neo4j/neo4j/blob/3.0/manual/embedded-
examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java)

We have created two helper methods to handle user names and adding users to the database:

private static String idToUserName(final int id)
{
Ê return "user" + id + "@neo4j.org" ;
}

private static Node createAndIndexUser(final String username)
{
Ê Node node = graphDb. createNode();
Ê node. setProperty (USERNAME_KEY, username);
Ê nodeIndex. add(node, USERNAME_KEY, username);
Ê return node;
}

The next step is to start the database server:

graphDb = new GraphDatabaseFactory(). newEmbeddedDatabase(DB_PATH);
registerShutdownHook();

ItÕs time to add the users:

try (Transaction tx = graphDb. beginTx())
{
Ê nodeIndex = graphDb. index(). forNodes("nodes");
Ê // Create some users and index their names with the IndexService
Ê for (int id = 0; id < 100; id ++)
Ê {
Ê createAndIndexUser(idToUserName(id));
Ê }

And hereÕs how to find a user by Id:

int idToFind = 45;
String userName = idToUserName(idToFind);
Node foundUser = nodeIndex. get (USERNAME_KEY, userName). getSingle ();

System. out . println ("The username of user " + idToFind + " is "
Ê + foundUser. getProperty (USERNAME_KEY));

2.6. Managing resources when using long running
transactions
It is necessary to always open a transaction when accessing the database. Inside a long running
transaction it is good practice to ensure that any ResourceIterator

26

https://github.com/neo4j/neo4j/blob/3.0/manual/embedded-examples/src/main/java/org/neo4j/examples/EmbeddedNeo4jWithIndexing.java
javadocs/org/neo4j/graphdb/ResourceIterator.html

(javadocs/org/neo4j/graphdb/ResourceIterator.html) s obtained inside the transaction are closed as early
as possible. This is either achieved by just exhausting the iterator or by explicitly calling its close
method.

What follows is an example of how to work with a ResourceIterator . As we donÕt exhaust the iterator,
we will close it explicitly using the close() method.

Label label = Label. label ("User");
int idToFind = 45;
String nameToFind = "user" + idToFind + "@neo4j.org" ;
try (Transaction tx = graphDb. beginTx();
Ê ResourceIterator <Node> users = graphDb. findNodes(label , "username", nameToFind))
{
Ê Node firstUserNode ;
Ê if (users. hasNext())
Ê {
Ê firstUserNode = users. next ();
Ê }
Ê users. close ();
}

2.7. Controlling logging
To control logging in Neo4j embedded, use the Neo4j embedded logging framework.

Neo4j embedded provides logging via its own org.neo4j.logging.Log
(javadocs/org/neo4j/logging/Log.html) layer, and does not natively use any existing Java logging
framework. All logging events produced by Neo4j have a name, a level and a message. The name is a
FQCN (fully qualified class name).

Neo4j uses the following log levels:

ERROR For serious errors that are almost always fatal

WARN For events that are serious, but not fatal

INFO Informational events

DEBUG Debugging events

To enable logging, an implementation of org.neo4j.logging.LogProvider
(javadocs/org/neo4j/logging/LogProvider.html) must be provided to the GraphDatabaseFactory
(javadocs/org/neo4j/graphdb/factory/GraphDatabaseFactory.html) , as follows:

LogProvider logProvider = new MyCustomLogProvider(output);
graphDb = new GraphDatabaseFactory(). setUserLogProvider (logProvider). newEmbeddedDatabase(DB_PATH);

Neo4j also includes a binding for SLF4J, which is available in the neo4j-slf4j library jar. This can be
obtained via Maven:

27

javadocs/org/neo4j/logging/Log.html
javadocs/org/neo4j/logging/LogProvider.html
javadocs/org/neo4j/graphdb/factory/GraphDatabaseFactory.html

Ê1 <project>
Ê2 ...
Ê3 <dependencies>
Ê4 <dependency>
Ê5 <groupId>org.neo4j </groupId>
Ê6 <artifactId> neo4j-slf4j </artifactId>
Ê7 <version>3.0</version>
Ê8 </dependency>
Ê9 <dependency>
10 <groupId>org.slf4j </groupId>
11 <artifactId> slf4j-api </artifactId>
12 <version>${slf4j-version} </version>
13 </dependency>
14 ...
15 </dependencies>
16 ...
17 </project>

To use this binding, simply pass an instance of org.neo4j.logging.slf4j.Slf4jLogProvider
(javadocs/org/neo4j/logging/slf4j/Slf4jLogProvider.html) to the GraphDatabaseFactory
(javadocs/org/neo4j/graphdb/factory/GraphDatabaseFactory.html) , as follows:

graphDb = new GraphDatabaseFactory(). setUserLogProvider (new Slf4jLogProvider ()). newEmbeddedDatabase(
DB_PATH);

All log output can then be controlled via SLF4J configuration.

2.8. Basic unit testing
The basic pattern of unit testing with Neo4j is illustrated by the following example.

To access the Neo4j testing facilities you should have the neo4j-kernel 'tests.jar' together with the
neo4j-io 'tests.jar' on the classpath during tests. You can download them from Maven Central:
org.neo4j:neo4j-kernel
(http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22) and
org.neo4j:neo4j-io (http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-
io%22).

Using Maven as a dependency manager you would typically add this dependency together with JUnit
and Hamcrest like so:

28

javadocs/org/neo4j/logging/slf4j/Slf4jLogProvider.html
javadocs/org/neo4j/graphdb/factory/GraphDatabaseFactory.html
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search|ga|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-io%22

